* Step 1: Bounds WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: ++(x,++(y,z)) -> ++(++(x,y),z) ++(x,nil()) -> x ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y make(x) -> .(x,nil()) rev(++(x,y)) -> ++(rev(y),rev(x)) rev(nil()) -> nil() rev(rev(x)) -> x - Signature: {++/2,make/1,rev/1} / {./2,nil/0} - Obligation: runtime complexity wrt. defined symbols {++,make,rev} and constructors {.,nil} + Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} + Details: The problem is match-bounded by 1. The enriched problem is compatible with follwoing automaton. ++_0(2,2) -> 1 ++_1(2,2) -> 3 ._0(2,2) -> 1 ._0(2,2) -> 2 ._0(2,2) -> 3 ._1(2,3) -> 1 ._1(2,3) -> 3 make_0(2) -> 1 nil_0() -> 1 nil_0() -> 2 nil_0() -> 3 nil_1() -> 1 nil_1() -> 3 rev_0(2) -> 1 2 -> 1 2 -> 3 * Step 2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: ++(x,++(y,z)) -> ++(++(x,y),z) ++(x,nil()) -> x ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y make(x) -> .(x,nil()) rev(++(x,y)) -> ++(rev(y),rev(x)) rev(nil()) -> nil() rev(rev(x)) -> x - Signature: {++/2,make/1,rev/1} / {./2,nil/0} - Obligation: runtime complexity wrt. defined symbols {++,make,rev} and constructors {.,nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))