* Step 1: DependencyPairs WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict TRS:
            gcd(x,0()) -> x
            gcd(0(),y) -> y
            gcd(s(x),s(y)) -> if(<(x,y),gcd(s(x),-(y,x)),gcd(-(x,y),s(y)))
        - Signature:
            {gcd/2} / {-/2,0/0, c_1(x)
          gcd#(0(),y) -> c_2(y)
          gcd#(s(x),s(y)) -> c_3(x,y,gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            gcd#(x,0()) -> c_1(x)
            gcd#(0(),y) -> c_2(y)
            gcd#(s(x),s(y)) -> c_3(x,y,gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
        - Strict TRS:
            gcd(x,0()) -> x
            gcd(0(),y) -> y
            gcd(s(x),s(y)) -> if(<(x,y),gcd(s(x),-(y,x)),gcd(-(x,y),s(y)))
        - Signature:
            {gcd/2,gcd#/2} / {-/2,0/0, c_1(x)
          gcd#(0(),y) -> c_2(y)
          gcd#(s(x),s(y)) -> c_3(x,y,gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
* Step 3: SimplifyRHS WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            gcd#(x,0()) -> c_1(x)
            gcd#(0(),y) -> c_2(y)
            gcd#(s(x),s(y)) -> c_3(x,y,gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
        - Signature:
            {gcd/2,gcd#/2} / {-/2,0/0, c_1(x)
             -->_1 gcd#(s(x),s(y)) -> c_3(x,y,gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y))):3
             -->_1 gcd#(0(),y) -> c_2(y):2
             -->_1 gcd#(x,0()) -> c_1(x):1
          
          2:S:gcd#(0(),y) -> c_2(y)
             -->_1 gcd#(s(x),s(y)) -> c_3(x,y,gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y))):3
             -->_1 gcd#(0(),y) -> c_2(y):2
             -->_1 gcd#(x,0()) -> c_1(x):1
          
          3:S:gcd#(s(x),s(y)) -> c_3(x,y,gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
             -->_2 gcd#(s(x),s(y)) -> c_3(x,y,gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y))):3
             -->_1 gcd#(s(x),s(y)) -> c_3(x,y,gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y))):3
             -->_2 gcd#(0(),y) -> c_2(y):2
             -->_1 gcd#(0(),y) -> c_2(y):2
             -->_2 gcd#(x,0()) -> c_1(x):1
             -->_1 gcd#(x,0()) -> c_1(x):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          gcd#(s(x),s(y)) -> c_3(x,y)
* Step 4: MI WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            gcd#(x,0()) -> c_1(x)
            gcd#(0(),y) -> c_2(y)
            gcd#(s(x),s(y)) -> c_3(x,y)
        - Signature:
            {gcd/2,gcd#/2} / {-/2,0/0, [1] x + [0] 
                        = c_1(x)      
        
            gcd#(0(),y) = [19]        
                        > [7]         
                        = c_2(y)      
        
        gcd#(s(x),s(y)) = [23]        
                        > [0]         
                        = c_3(x,y)    
        
        
        Following rules are (at-least) weakly oriented:
        
* Step 5: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            gcd#(x,0()) -> c_1(x)
            gcd#(0(),y) -> c_2(y)
            gcd#(s(x),s(y)) -> c_3(x,y)
        - Signature:
            {gcd/2,gcd#/2} / {-/2,0/0,