```* Step 1: DependencyPairs WORST_CASE(?,O(1))
+ Considered Problem:
- Strict TRS:
gcd(x,0()) -> x
gcd(0(),y) -> y
gcd(s(x),s(y)) -> if(<(x,y),gcd(s(x),-(y,x)),gcd(-(x,y),s(y)))
- Signature:
{gcd/2} / {-/2,0/0, c_1()
gcd#(0(),y) -> c_2()
gcd#(s(x),s(y)) -> c_3(gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
Weak DPs

and mark the set of starting terms.
* Step 2: UsableRules WORST_CASE(?,O(1))
+ Considered Problem:
- Strict DPs:
gcd#(x,0()) -> c_1()
gcd#(0(),y) -> c_2()
gcd#(s(x),s(y)) -> c_3(gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
- Weak TRS:
gcd(x,0()) -> x
gcd(0(),y) -> y
gcd(s(x),s(y)) -> if(<(x,y),gcd(s(x),-(y,x)),gcd(-(x,y),s(y)))
- Signature:
{gcd/2,gcd#/2} / {-/2,0/0, c_1()
gcd#(0(),y) -> c_2()
gcd#(s(x),s(y)) -> c_3(gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
* Step 3: Trivial WORST_CASE(?,O(1))
+ Considered Problem:
- Strict DPs:
gcd#(x,0()) -> c_1()
gcd#(0(),y) -> c_2()
gcd#(s(x),s(y)) -> c_3(gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
- Signature:
{gcd/2,gcd#/2} / {-/2,0/0, c_1()

2:S:gcd#(0(),y) -> c_2()

3:S:gcd#(s(x),s(y)) -> c_3(gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))

The dependency graph contains no loops, we remove all dependency pairs.
* Step 4: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:

- Signature:
{gcd/2,gcd#/2} / {-/2,0/0,
```