### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

fac(s(x)) → *(fac(p(s(x))), s(x))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))

Rewrite Strategy: FULL

### (1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
p(s(s(x))) →+ s(p(s(x)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].

### (3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

### (4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

fac(s(x)) → *'(fac(p(s(x))), s(x))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))

S is empty.
Rewrite Strategy: FULL

### (5) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
*'/1

### (6) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

fac(s(x)) → *'(fac(p(s(x))))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))

S is empty.
Rewrite Strategy: FULL

Infered types.

### (8) Obligation:

TRS:
Rules:
fac(s(x)) → *'(fac(p(s(x))))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))

Types:
fac :: s:0' → *'
s :: s:0' → s:0'
*' :: *' → *'
p :: s:0' → s:0'
0' :: s:0'
hole_*'1_0 :: *'
hole_s:0'2_0 :: s:0'
gen_*'3_0 :: Nat → *'
gen_s:0'4_0 :: Nat → s:0'

### (9) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
fac, p

They will be analysed ascendingly in the following order:
p < fac

### (10) Obligation:

TRS:
Rules:
fac(s(x)) → *'(fac(p(s(x))))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))

Types:
fac :: s:0' → *'
s :: s:0' → s:0'
*' :: *' → *'
p :: s:0' → s:0'
0' :: s:0'
hole_*'1_0 :: *'
hole_s:0'2_0 :: s:0'
gen_*'3_0 :: Nat → *'
gen_s:0'4_0 :: Nat → s:0'

Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

The following defined symbols remain to be analysed:
p, fac

They will be analysed ascendingly in the following order:
p < fac

### (11) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)

Induction Base:
p(gen_s:0'4_0(+(1, 0))) →RΩ(1)
0'

Induction Step:
p(gen_s:0'4_0(+(1, +(n6_0, 1)))) →RΩ(1)
s(p(s(gen_s:0'4_0(n6_0)))) →IH
s(gen_s:0'4_0(c7_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (13) Obligation:

TRS:
Rules:
fac(s(x)) → *'(fac(p(s(x))))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))

Types:
fac :: s:0' → *'
s :: s:0' → s:0'
*' :: *' → *'
p :: s:0' → s:0'
0' :: s:0'
hole_*'1_0 :: *'
hole_s:0'2_0 :: s:0'
gen_*'3_0 :: Nat → *'
gen_s:0'4_0 :: Nat → s:0'

Lemmas:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)

Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

The following defined symbols remain to be analysed:
fac

### (14) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
fac(gen_s:0'4_0(+(1, n213_0))) → *5_0, rt ∈ Ω(n2130 + n21302)

Induction Base:
fac(gen_s:0'4_0(+(1, 0)))

Induction Step:
fac(gen_s:0'4_0(+(1, +(n213_0, 1)))) →RΩ(1)
*'(fac(p(s(gen_s:0'4_0(+(1, n213_0)))))) →LΩ(2 + n2130)
*'(fac(gen_s:0'4_0(+(1, n213_0)))) →IH
*'(*5_0)

We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).

### (16) Obligation:

TRS:
Rules:
fac(s(x)) → *'(fac(p(s(x))))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))

Types:
fac :: s:0' → *'
s :: s:0' → s:0'
*' :: *' → *'
p :: s:0' → s:0'
0' :: s:0'
hole_*'1_0 :: *'
hole_s:0'2_0 :: s:0'
gen_*'3_0 :: Nat → *'
gen_s:0'4_0 :: Nat → s:0'

Lemmas:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)
fac(gen_s:0'4_0(+(1, n213_0))) → *5_0, rt ∈ Ω(n2130 + n21302)

Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

No more defined symbols left to analyse.

### (17) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
fac(gen_s:0'4_0(+(1, n213_0))) → *5_0, rt ∈ Ω(n2130 + n21302)

### (19) Obligation:

TRS:
Rules:
fac(s(x)) → *'(fac(p(s(x))))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))

Types:
fac :: s:0' → *'
s :: s:0' → s:0'
*' :: *' → *'
p :: s:0' → s:0'
0' :: s:0'
hole_*'1_0 :: *'
hole_s:0'2_0 :: s:0'
gen_*'3_0 :: Nat → *'
gen_s:0'4_0 :: Nat → s:0'

Lemmas:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)
fac(gen_s:0'4_0(+(1, n213_0))) → *5_0, rt ∈ Ω(n2130 + n21302)

Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

No more defined symbols left to analyse.

### (20) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
fac(gen_s:0'4_0(+(1, n213_0))) → *5_0, rt ∈ Ω(n2130 + n21302)

### (22) Obligation:

TRS:
Rules:
fac(s(x)) → *'(fac(p(s(x))))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))

Types:
fac :: s:0' → *'
s :: s:0' → s:0'
*' :: *' → *'
p :: s:0' → s:0'
0' :: s:0'
hole_*'1_0 :: *'
hole_s:0'2_0 :: s:0'
gen_*'3_0 :: Nat → *'
gen_s:0'4_0 :: Nat → s:0'

Lemmas:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)

Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

No more defined symbols left to analyse.

### (23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)