0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtUsableRulesProof (⇔, 0 ms)
↳6 CdtProblem
↳7 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 54 ms)
↳8 CdtProblem
↳9 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳10 BOUNDS(1, 1)
f(g(x), y, y) → g(f(x, x, y))
As the TRS does not nest defined symbols, we have rc = irc.
f(g(x), y, y) → g(f(x, x, y))
Tuples:
f(g(z0), z1, z1) → g(f(z0, z0, z1))
S tuples:
F(g(z0), z1, z1) → c(F(z0, z0, z1))
K tuples:none
F(g(z0), z1, z1) → c(F(z0, z0, z1))
f
F
c
f(g(z0), z1, z1) → g(f(z0, z0, z1))
S tuples:
F(g(z0), z1, z1) → c(F(z0, z0, z1))
K tuples:none
F(g(z0), z1, z1) → c(F(z0, z0, z1))
F
c
We considered the (Usable) Rules:none
F(g(z0), z1, z1) → c(F(z0, z0, z1))
The order we found is given by the following interpretation:
F(g(z0), z1, z1) → c(F(z0, z0, z1))
POL(F(x1, x2, x3)) = x1 + x1·x3
POL(c(x1)) = x1
POL(g(x1)) = [2] + x1
S tuples:none
F(g(z0), z1, z1) → c(F(z0, z0, z1))
Defined Rule Symbols:none
F(g(z0), z1, z1) → c(F(z0, z0, z1))
F
c