(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(x, a) → x
f(x, g(y)) → f(g(x), y)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(x, g(y)) →+ f(g(x), y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [y / g(y)].
The result substitution is [x / g(x)].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(x, a) → x
f(x, g(y)) → f(g(x), y)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(x, a) → x
f(x, g(y)) → f(g(x), y)
Types:
f :: a:g → a:g → a:g
a :: a:g
g :: a:g → a:g
hole_a:g1_0 :: a:g
gen_a:g2_0 :: Nat → a:g
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
TRS:
Rules:
f(
x,
a) →
xf(
x,
g(
y)) →
f(
g(
x),
y)
Types:
f :: a:g → a:g → a:g
a :: a:g
g :: a:g → a:g
hole_a:g1_0 :: a:g
gen_a:g2_0 :: Nat → a:g
Generator Equations:
gen_a:g2_0(0) ⇔ a
gen_a:g2_0(+(x, 1)) ⇔ g(gen_a:g2_0(x))
The following defined symbols remain to be analysed:
f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_a:g2_0(
a),
gen_a:g2_0(
n4_0)) →
gen_a:g2_0(
+(
n4_0,
a)), rt ∈ Ω(1 + n4
0)
Induction Base:
f(gen_a:g2_0(a), gen_a:g2_0(0)) →RΩ(1)
gen_a:g2_0(a)
Induction Step:
f(gen_a:g2_0(a), gen_a:g2_0(+(n4_0, 1))) →RΩ(1)
f(g(gen_a:g2_0(a)), gen_a:g2_0(n4_0)) →IH
gen_a:g2_0(+(+(a, 1), c5_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
x,
a) →
xf(
x,
g(
y)) →
f(
g(
x),
y)
Types:
f :: a:g → a:g → a:g
a :: a:g
g :: a:g → a:g
hole_a:g1_0 :: a:g
gen_a:g2_0 :: Nat → a:g
Lemmas:
f(gen_a:g2_0(a), gen_a:g2_0(n4_0)) → gen_a:g2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_a:g2_0(0) ⇔ a
gen_a:g2_0(+(x, 1)) ⇔ g(gen_a:g2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_a:g2_0(a), gen_a:g2_0(n4_0)) → gen_a:g2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
f(
x,
a) →
xf(
x,
g(
y)) →
f(
g(
x),
y)
Types:
f :: a:g → a:g → a:g
a :: a:g
g :: a:g → a:g
hole_a:g1_0 :: a:g
gen_a:g2_0 :: Nat → a:g
Lemmas:
f(gen_a:g2_0(a), gen_a:g2_0(n4_0)) → gen_a:g2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_a:g2_0(0) ⇔ a
gen_a:g2_0(+(x, 1)) ⇔ g(gen_a:g2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_a:g2_0(a), gen_a:g2_0(n4_0)) → gen_a:g2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
(16) BOUNDS(n^1, INF)