* Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) admit(x,nil()) -> nil() cond(true(),y) -> y - Signature: {admit/2,cond/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0} - Obligation: runtime complexity wrt. defined symbols {admit,cond} and constructors {.,=,carry,nil,sum,true,w} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak dependency pairs: Strict DPs admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))) admit#(x,nil()) -> c_2() cond#(true(),y) -> c_3(y) Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))) admit#(x,nil()) -> c_2() cond#(true(),y) -> c_3(y) - Strict TRS: admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) admit(x,nil()) -> nil() cond(true(),y) -> y - Signature: {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/1} - Obligation: runtime complexity wrt. defined symbols {admit#,cond#} and constructors {.,=,carry,nil,sum,true,w} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) admit(x,nil()) -> nil() admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))) admit#(x,nil()) -> c_2() cond#(true(),y) -> c_3(y) * Step 3: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))) admit#(x,nil()) -> c_2() cond#(true(),y) -> c_3(y) - Strict TRS: admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) admit(x,nil()) -> nil() - Signature: {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/1} - Obligation: runtime complexity wrt. defined symbols {admit#,cond#} and constructors {.,=,carry,nil,sum,true,w} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(.) = {2}, uargs(cond) = {2}, uargs(cond#) = {2}, uargs(c_1) = {1}, uargs(c_3) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(.) = [1] x1 + [1] x2 + [0] p(=) = [1] p(admit) = [4] x1 + [4] x2 + [2] p(carry) = [1] x1 + [0] p(cond) = [2] x1 + [1] x2 + [0] p(nil) = [2] p(sum) = [1] x1 + [1] x2 + [0] p(true) = [5] p(w) = [2] p(admit#) = [6] x1 + [4] x2 + [0] p(cond#) = [1] x1 + [1] x2 + [3] p(c_1) = [1] x1 + [4] p(c_2) = [0] p(c_3) = [1] x1 + [1] Following rules are strictly oriented: admit#(x,nil()) = [6] x + [8] > [0] = c_2() cond#(true(),y) = [1] y + [8] > [1] y + [1] = c_3(y) admit(x,.(u,.(v,.(w(),z)))) = [4] u + [4] v + [4] x + [4] z + [10] > [1] u + [1] v + [4] x + [4] z + [6] = cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) admit(x,nil()) = [4] x + [10] > [2] = nil() Following rules are (at-least) weakly oriented: admit#(x,.(u,.(v,.(w(),z)))) = [4] u + [4] v + [6] x + [4] z + [8] >= [1] u + [1] v + [4] x + [4] z + [12] = c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 4: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))) - Weak DPs: admit#(x,nil()) -> c_2() cond#(true(),y) -> c_3(y) - Weak TRS: admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) admit(x,nil()) -> nil() - Signature: {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/1} - Obligation: runtime complexity wrt. defined symbols {admit#,cond#} and constructors {.,=,carry,nil,sum,true,w} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))) 2:W:admit#(x,nil()) -> c_2() 3:W:cond#(true(),y) -> c_3(y) -->_1 cond#(true(),y) -> c_3(y):3 -->_1 admit#(x,nil()) -> c_2():2 -->_1 admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()) ,.(u,.(v,.(w(),admit(carry(x,u,v),z)))))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: admit#(x,nil()) -> c_2() * Step 5: SimplifyRHS WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))) - Weak DPs: cond#(true(),y) -> c_3(y) - Weak TRS: admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) admit(x,nil()) -> nil() - Signature: {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/1} - Obligation: runtime complexity wrt. defined symbols {admit#,cond#} and constructors {.,=,carry,nil,sum,true,w} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))) 3:W:cond#(true(),y) -> c_3(y) -->_1 cond#(true(),y) -> c_3(y):3 -->_1 admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()) ,.(u,.(v,.(w(),admit(carry(x,u,v),z)))))):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: admit#(x,.(u,.(v,.(w(),z)))) -> c_1() * Step 6: UsableRules WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: admit#(x,.(u,.(v,.(w(),z)))) -> c_1() - Weak DPs: cond#(true(),y) -> c_3(y) - Weak TRS: admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) admit(x,nil()) -> nil() - Signature: {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/0,c_2/0,c_3/1} - Obligation: runtime complexity wrt. defined symbols {admit#,cond#} and constructors {.,=,carry,nil,sum,true,w} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: admit#(x,.(u,.(v,.(w(),z)))) -> c_1() cond#(true(),y) -> c_3(y) * Step 7: PredecessorEstimationCP WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: admit#(x,.(u,.(v,.(w(),z)))) -> c_1() - Weak DPs: cond#(true(),y) -> c_3(y) - Signature: {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/0,c_2/0,c_3/1} - Obligation: runtime complexity wrt. defined symbols {admit#,cond#} and constructors {.,=,carry,nil,sum,true,w} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: admit#(x,.(u,.(v,.(w(),z)))) -> c_1() The strictly oriented rules are moved into the weak component. ** Step 7.a:1: NaturalMI WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: admit#(x,.(u,.(v,.(w(),z)))) -> c_1() - Weak DPs: cond#(true(),y) -> c_3(y) - Signature: {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/0,c_2/0,c_3/1} - Obligation: runtime complexity wrt. defined symbols {admit#,cond#} and constructors {.,=,carry,nil,sum,true,w} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: none Following symbols are considered usable: all TcT has computed the following interpretation: p(.) = [0] p(=) = [0] p(admit) = [0] p(carry) = [0] p(cond) = [0] p(nil) = [0] p(sum) = [0] p(true) = [0] p(w) = [0] p(admit#) = [2] p(cond#) = [1] x2 + [0] p(c_1) = [0] p(c_2) = [0] p(c_3) = [1] x1 + [0] Following rules are strictly oriented: admit#(x,.(u,.(v,.(w(),z)))) = [2] > [0] = c_1() Following rules are (at-least) weakly oriented: cond#(true(),y) = [1] y + [0] >= [1] y + [0] = c_3(y) ** Step 7.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: admit#(x,.(u,.(v,.(w(),z)))) -> c_1() cond#(true(),y) -> c_3(y) - Signature: {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/0,c_2/0,c_3/1} - Obligation: runtime complexity wrt. defined symbols {admit#,cond#} and constructors {.,=,carry,nil,sum,true,w} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ** Step 7.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: admit#(x,.(u,.(v,.(w(),z)))) -> c_1() cond#(true(),y) -> c_3(y) - Signature: {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/0,c_2/0,c_3/1} - Obligation: runtime complexity wrt. defined symbols {admit#,cond#} and constructors {.,=,carry,nil,sum,true,w} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:admit#(x,.(u,.(v,.(w(),z)))) -> c_1() 2:W:cond#(true(),y) -> c_3(y) -->_1 cond#(true(),y) -> c_3(y):2 -->_1 admit#(x,.(u,.(v,.(w(),z)))) -> c_1():1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: cond#(true(),y) -> c_3(y) 1: admit#(x,.(u,.(v,.(w(),z)))) -> c_1() ** Step 7.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/0,c_2/0,c_3/1} - Obligation: runtime complexity wrt. defined symbols {admit#,cond#} and constructors {.,=,carry,nil,sum,true,w} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))