* Step 1: Bounds WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
++(x,nil()) -> x
++(nil(),y) -> y
flatten(nil()) -> nil()
flatten(unit(x)) -> flatten(x)
rev(nil()) -> nil()
rev(unit(x)) -> unit(x)
- Signature:
{++/2,flatten/1,rev/1} / {nil/0,unit/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {++,flatten,rev} and constructors {nil,unit}
+ Applied Processor:
Bounds {initialAutomaton = minimal, enrichment = match}
+ Details:
The problem is match-bounded by 1.
The enriched problem is compatible with follwoing automaton.
++_0(2,2) -> 1
flatten_0(2) -> 1
flatten_1(2) -> 1
nil_0() -> 1
nil_0() -> 2
nil_1() -> 1
rev_0(2) -> 1
unit_0(2) -> 1
unit_0(2) -> 2
unit_1(2) -> 1
2 -> 1
* Step 2: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
++(x,nil()) -> x
++(nil(),y) -> y
flatten(nil()) -> nil()
flatten(unit(x)) -> flatten(x)
rev(nil()) -> nil()
rev(unit(x)) -> unit(x)
- Signature:
{++/2,flatten/1,rev/1} / {nil/0,unit/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {++,flatten,rev} and constructors {nil,unit}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(?,O(n^1))