0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtUsableRulesProof (⇔, 0 ms)
↳6 CdtProblem
↳7 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 75 ms)
↳8 CdtProblem
↳9 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳10 BOUNDS(1, 1)
and(not(not(x)), y, not(z)) → and(y, band(x, z), x)
As the TRS does not nest defined symbols, we have rc = irc.
and(not(not(x)), y, not(z)) → and(y, band(x, z), x)
Tuples:
and(not(not(z0)), z1, not(z2)) → and(z1, band(z0, z2), z0)
S tuples:
AND(not(not(z0)), z1, not(z2)) → c(AND(z1, band(z0, z2), z0))
K tuples:none
AND(not(not(z0)), z1, not(z2)) → c(AND(z1, band(z0, z2), z0))
and
AND
c
and(not(not(z0)), z1, not(z2)) → and(z1, band(z0, z2), z0)
S tuples:
AND(not(not(z0)), z1, not(z2)) → c(AND(z1, band(z0, z2), z0))
K tuples:none
AND(not(not(z0)), z1, not(z2)) → c(AND(z1, band(z0, z2), z0))
AND
c
We considered the (Usable) Rules:none
AND(not(not(z0)), z1, not(z2)) → c(AND(z1, band(z0, z2), z0))
The order we found is given by the following interpretation:
AND(not(not(z0)), z1, not(z2)) → c(AND(z1, band(z0, z2), z0))
POL(AND(x1, x2, x3)) = [3]x1 + [3]x2 + x3
POL(band(x1, x2)) = [2]
POL(c(x1)) = x1
POL(not(x1)) = [3] + x1
S tuples:none
AND(not(not(z0)), z1, not(z2)) → c(AND(z1, band(z0, z2), z0))
Defined Rule Symbols:none
AND(not(not(z0)), z1, not(z2)) → c(AND(z1, band(z0, z2), z0))
AND
c