* Step 1: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: =(x,y) -> xor(x,xor(y,true())) implies(x,y) -> xor(and(x,y),xor(x,true())) not(x) -> xor(x,true()) or(x,y) -> xor(and(x,y),xor(x,y)) - Signature: {=/2,implies/2,not/1,or/2} / {and/2,true/0,xor/2} - Obligation: runtime complexity wrt. defined symbols {=,implies,not,or} and constructors {and,true,xor} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak dependency pairs: Strict DPs =#(x,y) -> c_1(x,y) implies#(x,y) -> c_2(x,y,x) not#(x) -> c_3(x) or#(x,y) -> c_4(x,y,x,y) Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: =#(x,y) -> c_1(x,y) implies#(x,y) -> c_2(x,y,x) not#(x) -> c_3(x) or#(x,y) -> c_4(x,y,x,y) - Strict TRS: =(x,y) -> xor(x,xor(y,true())) implies(x,y) -> xor(and(x,y),xor(x,true())) not(x) -> xor(x,true()) or(x,y) -> xor(and(x,y),xor(x,y)) - Signature: {=/2,implies/2,not/1,or/2,=#/2,implies#/2,not#/1,or#/2} / {and/2,true/0,xor/2,c_1/2,c_2/3,c_3/1,c_4/4} - Obligation: runtime complexity wrt. defined symbols {=#,implies#,not#,or#} and constructors {and,true,xor} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: =#(x,y) -> c_1(x,y) implies#(x,y) -> c_2(x,y,x) not#(x) -> c_3(x) or#(x,y) -> c_4(x,y,x,y) * Step 3: PredecessorEstimationCP WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: =#(x,y) -> c_1(x,y) implies#(x,y) -> c_2(x,y,x) not#(x) -> c_3(x) or#(x,y) -> c_4(x,y,x,y) - Signature: {=/2,implies/2,not/1,or/2,=#/2,implies#/2,not#/1,or#/2} / {and/2,true/0,xor/2,c_1/2,c_2/3,c_3/1,c_4/4} - Obligation: runtime complexity wrt. defined symbols {=#,implies#,not#,or#} and constructors {and,true,xor} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: =#(x,y) -> c_1(x,y) 2: implies#(x,y) -> c_2(x,y,x) 3: not#(x) -> c_3(x) 4: or#(x,y) -> c_4(x,y,x,y) The strictly oriented rules are moved into the weak component. ** Step 3.a:1: NaturalMI WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: =#(x,y) -> c_1(x,y) implies#(x,y) -> c_2(x,y,x) not#(x) -> c_3(x) or#(x,y) -> c_4(x,y,x,y) - Signature: {=/2,implies/2,not/1,or/2,=#/2,implies#/2,not#/1,or#/2} / {and/2,true/0,xor/2,c_1/2,c_2/3,c_3/1,c_4/4} - Obligation: runtime complexity wrt. defined symbols {=#,implies#,not#,or#} and constructors {and,true,xor} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: none Following symbols are considered usable: all TcT has computed the following interpretation: p(=) = [1] x1 + [0] p(and) = [0] p(implies) = [0] p(not) = [0] p(or) = [0] p(true) = [0] p(xor) = [0] p(=#) = [1] p(implies#) = [5] x1 + [1] p(not#) = [1] p(or#) = [1] p(c_1) = [0] p(c_2) = [5] x1 + [0] p(c_3) = [0] p(c_4) = [0] Following rules are strictly oriented: =#(x,y) = [1] > [0] = c_1(x,y) implies#(x,y) = [5] x + [1] > [5] x + [0] = c_2(x,y,x) not#(x) = [1] > [0] = c_3(x) or#(x,y) = [1] > [0] = c_4(x,y,x,y) Following rules are (at-least) weakly oriented: ** Step 3.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: =#(x,y) -> c_1(x,y) implies#(x,y) -> c_2(x,y,x) not#(x) -> c_3(x) or#(x,y) -> c_4(x,y,x,y) - Signature: {=/2,implies/2,not/1,or/2,=#/2,implies#/2,not#/1,or#/2} / {and/2,true/0,xor/2,c_1/2,c_2/3,c_3/1,c_4/4} - Obligation: runtime complexity wrt. defined symbols {=#,implies#,not#,or#} and constructors {and,true,xor} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ** Step 3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: =#(x,y) -> c_1(x,y) implies#(x,y) -> c_2(x,y,x) not#(x) -> c_3(x) or#(x,y) -> c_4(x,y,x,y) - Signature: {=/2,implies/2,not/1,or/2,=#/2,implies#/2,not#/1,or#/2} / {and/2,true/0,xor/2,c_1/2,c_2/3,c_3/1,c_4/4} - Obligation: runtime complexity wrt. defined symbols {=#,implies#,not#,or#} and constructors {and,true,xor} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:=#(x,y) -> c_1(x,y) -->_2 or#(x,y) -> c_4(x,y,x,y):4 -->_1 or#(x,y) -> c_4(x,y,x,y):4 -->_2 not#(x) -> c_3(x):3 -->_1 not#(x) -> c_3(x):3 -->_2 implies#(x,y) -> c_2(x,y,x):2 -->_1 implies#(x,y) -> c_2(x,y,x):2 -->_2 =#(x,y) -> c_1(x,y):1 -->_1 =#(x,y) -> c_1(x,y):1 2:W:implies#(x,y) -> c_2(x,y,x) -->_3 or#(x,y) -> c_4(x,y,x,y):4 -->_2 or#(x,y) -> c_4(x,y,x,y):4 -->_1 or#(x,y) -> c_4(x,y,x,y):4 -->_3 not#(x) -> c_3(x):3 -->_2 not#(x) -> c_3(x):3 -->_1 not#(x) -> c_3(x):3 -->_3 implies#(x,y) -> c_2(x,y,x):2 -->_2 implies#(x,y) -> c_2(x,y,x):2 -->_1 implies#(x,y) -> c_2(x,y,x):2 -->_3 =#(x,y) -> c_1(x,y):1 -->_2 =#(x,y) -> c_1(x,y):1 -->_1 =#(x,y) -> c_1(x,y):1 3:W:not#(x) -> c_3(x) -->_1 or#(x,y) -> c_4(x,y,x,y):4 -->_1 not#(x) -> c_3(x):3 -->_1 implies#(x,y) -> c_2(x,y,x):2 -->_1 =#(x,y) -> c_1(x,y):1 4:W:or#(x,y) -> c_4(x,y,x,y) -->_4 or#(x,y) -> c_4(x,y,x,y):4 -->_3 or#(x,y) -> c_4(x,y,x,y):4 -->_2 or#(x,y) -> c_4(x,y,x,y):4 -->_1 or#(x,y) -> c_4(x,y,x,y):4 -->_4 not#(x) -> c_3(x):3 -->_3 not#(x) -> c_3(x):3 -->_2 not#(x) -> c_3(x):3 -->_1 not#(x) -> c_3(x):3 -->_4 implies#(x,y) -> c_2(x,y,x):2 -->_3 implies#(x,y) -> c_2(x,y,x):2 -->_2 implies#(x,y) -> c_2(x,y,x):2 -->_1 implies#(x,y) -> c_2(x,y,x):2 -->_4 =#(x,y) -> c_1(x,y):1 -->_3 =#(x,y) -> c_1(x,y):1 -->_2 =#(x,y) -> c_1(x,y):1 -->_1 =#(x,y) -> c_1(x,y):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: =#(x,y) -> c_1(x,y) 4: or#(x,y) -> c_4(x,y,x,y) 3: not#(x) -> c_3(x) 2: implies#(x,y) -> c_2(x,y,x) ** Step 3.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {=/2,implies/2,not/1,or/2,=#/2,implies#/2,not#/1,or#/2} / {and/2,true/0,xor/2,c_1/2,c_2/3,c_3/1,c_4/4} - Obligation: runtime complexity wrt. defined symbols {=#,implies#,not#,or#} and constructors {and,true,xor} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))