* Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: divp(x,y) -> =(rem(x,y),0()) prime(0()) -> false() prime(s(0())) -> false() prime(s(s(x))) -> prime1(s(s(x)),s(x)) prime1(x,0()) -> false() prime1(x,s(0())) -> true() prime1(x,s(s(y))) -> and(not(divp(s(s(y)),x)),prime1(x,s(y))) - Signature: {divp/2,prime/1,prime1/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0} - Obligation: runtime complexity wrt. defined symbols {divp,prime,prime1} and constructors {0,=,and,false,not,rem,s,true} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak dependency pairs: Strict DPs divp#(x,y) -> c_1(x,y) prime#(0()) -> c_2() prime#(s(0())) -> c_3() prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) prime1#(x,0()) -> c_5() prime1#(x,s(0())) -> c_6() prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: divp#(x,y) -> c_1(x,y) prime#(0()) -> c_2() prime#(s(0())) -> c_3() prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) prime1#(x,0()) -> c_5() prime1#(x,s(0())) -> c_6() prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) - Strict TRS: divp(x,y) -> =(rem(x,y),0()) prime(0()) -> false() prime(s(0())) -> false() prime(s(s(x))) -> prime1(s(s(x)),s(x)) prime1(x,0()) -> false() prime1(x,s(0())) -> true() prime1(x,s(s(y))) -> and(not(divp(s(s(y)),x)),prime1(x,s(y))) - Signature: {divp/2,prime/1,prime1/2,divp#/2,prime#/1,prime1#/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0,c_1/2 ,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: runtime complexity wrt. defined symbols {divp#,prime#,prime1#} and constructors {0,=,and,false,not,rem,s ,true} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: divp#(x,y) -> c_1(x,y) prime#(0()) -> c_2() prime#(s(0())) -> c_3() prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) prime1#(x,0()) -> c_5() prime1#(x,s(0())) -> c_6() prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) * Step 3: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: divp#(x,y) -> c_1(x,y) prime#(0()) -> c_2() prime#(s(0())) -> c_3() prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) prime1#(x,0()) -> c_5() prime1#(x,s(0())) -> c_6() prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) - Signature: {divp/2,prime/1,prime1/2,divp#/2,prime#/1,prime1#/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0,c_1/2 ,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: runtime complexity wrt. defined symbols {divp#,prime#,prime1#} and constructors {0,=,and,false,not,rem,s ,true} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2,3,5,6} by application of Pre({2,3,5,6}) = {1,4,7}. Here rules are labelled as follows: 1: divp#(x,y) -> c_1(x,y) 2: prime#(0()) -> c_2() 3: prime#(s(0())) -> c_3() 4: prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) 5: prime1#(x,0()) -> c_5() 6: prime1#(x,s(0())) -> c_6() 7: prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) * Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: divp#(x,y) -> c_1(x,y) prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) - Weak DPs: prime#(0()) -> c_2() prime#(s(0())) -> c_3() prime1#(x,0()) -> c_5() prime1#(x,s(0())) -> c_6() - Signature: {divp/2,prime/1,prime1/2,divp#/2,prime#/1,prime1#/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0,c_1/2 ,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: runtime complexity wrt. defined symbols {divp#,prime#,prime1#} and constructors {0,=,and,false,not,rem,s ,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:divp#(x,y) -> c_1(x,y) -->_2 prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))):3 -->_1 prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))):3 -->_2 prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))):2 -->_1 prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))):2 -->_2 prime1#(x,s(0())) -> c_6():7 -->_1 prime1#(x,s(0())) -> c_6():7 -->_2 prime1#(x,0()) -> c_5():6 -->_1 prime1#(x,0()) -> c_5():6 -->_2 prime#(s(0())) -> c_3():5 -->_1 prime#(s(0())) -> c_3():5 -->_2 prime#(0()) -> c_2():4 -->_1 prime#(0()) -> c_2():4 -->_2 divp#(x,y) -> c_1(x,y):1 -->_1 divp#(x,y) -> c_1(x,y):1 2:S:prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) -->_1 prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))):3 -->_1 prime1#(x,s(0())) -> c_6():7 3:S:prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) -->_2 prime1#(x,s(0())) -> c_6():7 -->_2 prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))):3 -->_1 divp#(x,y) -> c_1(x,y):1 4:W:prime#(0()) -> c_2() 5:W:prime#(s(0())) -> c_3() 6:W:prime1#(x,0()) -> c_5() 7:W:prime1#(x,s(0())) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: prime#(0()) -> c_2() 5: prime#(s(0())) -> c_3() 6: prime1#(x,0()) -> c_5() 7: prime1#(x,s(0())) -> c_6() * Step 5: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: divp#(x,y) -> c_1(x,y) prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) - Signature: {divp/2,prime/1,prime1/2,divp#/2,prime#/1,prime1#/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0,c_1/2 ,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: runtime complexity wrt. defined symbols {divp#,prime#,prime1#} and constructors {0,=,and,false,not,rem,s ,true} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 2: prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) The strictly oriented rules are moved into the weak component. ** Step 5.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: divp#(x,y) -> c_1(x,y) prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) - Signature: {divp/2,prime/1,prime1/2,divp#/2,prime#/1,prime1#/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0,c_1/2 ,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: runtime complexity wrt. defined symbols {divp#,prime#,prime1#} and constructors {0,=,and,false,not,rem,s ,true} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1}, uargs(c_7) = {1,2} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(=) = [1] x2 + [0] p(and) = [1] x1 + [1] x2 + [0] p(divp) = [1] x1 + [4] x2 + [1] p(false) = [1] p(not) = [1] p(prime) = [2] x1 + [4] p(prime1) = [1] x1 + [1] x2 + [1] p(rem) = [1] x1 + [1] p(s) = [0] p(true) = [2] p(divp#) = [9] x1 + [0] p(prime#) = [1] x1 + [5] p(prime1#) = [0] p(c_1) = [0] p(c_2) = [1] p(c_3) = [2] p(c_4) = [1] x1 + [3] p(c_5) = [0] p(c_6) = [1] p(c_7) = [8] x1 + [8] x2 + [0] Following rules are strictly oriented: prime#(s(s(x))) = [5] > [3] = c_4(prime1#(s(s(x)),s(x))) Following rules are (at-least) weakly oriented: divp#(x,y) = [9] x + [0] >= [0] = c_1(x,y) prime1#(x,s(s(y))) = [0] >= [0] = c_7(divp#(s(s(y)),x),prime1#(x,s(y))) ** Step 5.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: divp#(x,y) -> c_1(x,y) prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) - Weak DPs: prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) - Signature: {divp/2,prime/1,prime1/2,divp#/2,prime#/1,prime1#/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0,c_1/2 ,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: runtime complexity wrt. defined symbols {divp#,prime#,prime1#} and constructors {0,=,and,false,not,rem,s ,true} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ** Step 5.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: divp#(x,y) -> c_1(x,y) prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) - Weak DPs: prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) - Signature: {divp/2,prime/1,prime1/2,divp#/2,prime#/1,prime1#/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0,c_1/2 ,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: runtime complexity wrt. defined symbols {divp#,prime#,prime1#} and constructors {0,=,and,false,not,rem,s ,true} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 2: prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) The strictly oriented rules are moved into the weak component. *** Step 5.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: divp#(x,y) -> c_1(x,y) prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) - Weak DPs: prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) - Signature: {divp/2,prime/1,prime1/2,divp#/2,prime#/1,prime1#/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0,c_1/2 ,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: runtime complexity wrt. defined symbols {divp#,prime#,prime1#} and constructors {0,=,and,false,not,rem,s ,true} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1}, uargs(c_7) = {1,2} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [2] p(=) = [2] p(and) = [1] x2 + [1] p(divp) = [1] x1 + [2] x2 + [0] p(false) = [0] p(not) = [0] p(prime) = [4] x1 + [8] p(prime1) = [1] x1 + [1] p(rem) = [1] x1 + [1] p(s) = [1] x1 + [4] p(true) = [0] p(divp#) = [0] p(prime#) = [2] x1 + [0] p(prime1#) = [1] x2 + [4] p(c_1) = [0] p(c_2) = [2] p(c_3) = [0] p(c_4) = [2] x1 + [0] p(c_5) = [1] p(c_6) = [1] p(c_7) = [8] x1 + [1] x2 + [1] Following rules are strictly oriented: prime1#(x,s(s(y))) = [1] y + [12] > [1] y + [9] = c_7(divp#(s(s(y)),x),prime1#(x,s(y))) Following rules are (at-least) weakly oriented: divp#(x,y) = [0] >= [0] = c_1(x,y) prime#(s(s(x))) = [2] x + [16] >= [2] x + [16] = c_4(prime1#(s(s(x)),s(x))) *** Step 5.b:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: divp#(x,y) -> c_1(x,y) - Weak DPs: prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) - Signature: {divp/2,prime/1,prime1/2,divp#/2,prime#/1,prime1#/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0,c_1/2 ,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: runtime complexity wrt. defined symbols {divp#,prime#,prime1#} and constructors {0,=,and,false,not,rem,s ,true} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 5.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: divp#(x,y) -> c_1(x,y) - Weak DPs: prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) - Signature: {divp/2,prime/1,prime1/2,divp#/2,prime#/1,prime1#/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0,c_1/2 ,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: runtime complexity wrt. defined symbols {divp#,prime#,prime1#} and constructors {0,=,and,false,not,rem,s ,true} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: divp#(x,y) -> c_1(x,y) Consider the set of all dependency pairs 1: divp#(x,y) -> c_1(x,y) 2: prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) 3: prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {1} These cover all (indirect) predecessors of dependency pairs {1,2} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. **** Step 5.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: divp#(x,y) -> c_1(x,y) - Weak DPs: prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) - Signature: {divp/2,prime/1,prime1/2,divp#/2,prime#/1,prime1#/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0,c_1/2 ,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: runtime complexity wrt. defined symbols {divp#,prime#,prime1#} and constructors {0,=,and,false,not,rem,s ,true} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1}, uargs(c_7) = {1,2} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [1] p(=) = [1] x2 + [0] p(and) = [1] p(divp) = [1] x1 + [2] p(false) = [2] p(not) = [1] p(prime) = [1] p(prime1) = [2] x1 + [8] x2 + [0] p(rem) = [8] p(s) = [1] x1 + [1] p(true) = [4] p(divp#) = [1] p(prime#) = [8] x1 + [13] p(prime1#) = [2] x2 + [7] p(c_1) = [0] p(c_2) = [2] p(c_3) = [0] p(c_4) = [1] x1 + [9] p(c_5) = [1] p(c_6) = [0] p(c_7) = [1] x1 + [1] x2 + [1] Following rules are strictly oriented: divp#(x,y) = [1] > [0] = c_1(x,y) Following rules are (at-least) weakly oriented: prime#(s(s(x))) = [8] x + [29] >= [2] x + [18] = c_4(prime1#(s(s(x)),s(x))) prime1#(x,s(s(y))) = [2] y + [11] >= [2] y + [11] = c_7(divp#(s(s(y)),x),prime1#(x,s(y))) **** Step 5.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: divp#(x,y) -> c_1(x,y) prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) - Signature: {divp/2,prime/1,prime1/2,divp#/2,prime#/1,prime1#/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0,c_1/2 ,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: runtime complexity wrt. defined symbols {divp#,prime#,prime1#} and constructors {0,=,and,false,not,rem,s ,true} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 5.b:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: divp#(x,y) -> c_1(x,y) prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) - Signature: {divp/2,prime/1,prime1/2,divp#/2,prime#/1,prime1#/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0,c_1/2 ,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: runtime complexity wrt. defined symbols {divp#,prime#,prime1#} and constructors {0,=,and,false,not,rem,s ,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:divp#(x,y) -> c_1(x,y) -->_2 prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))):3 -->_1 prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))):3 -->_2 prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))):2 -->_1 prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))):2 -->_2 divp#(x,y) -> c_1(x,y):1 -->_1 divp#(x,y) -> c_1(x,y):1 2:W:prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) -->_1 prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))):3 3:W:prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) -->_2 prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))):3 -->_1 divp#(x,y) -> c_1(x,y):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: divp#(x,y) -> c_1(x,y) 3: prime1#(x,s(s(y))) -> c_7(divp#(s(s(y)),x),prime1#(x,s(y))) 2: prime#(s(s(x))) -> c_4(prime1#(s(s(x)),s(x))) **** Step 5.b:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {divp/2,prime/1,prime1/2,divp#/2,prime#/1,prime1#/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0,c_1/2 ,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: runtime complexity wrt. defined symbols {divp#,prime#,prime1#} and constructors {0,=,and,false,not,rem,s ,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))