0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 19 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (ComplexityIfPolyImplication, 0 ms)
↳6 CdtProblem
↳7 CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 0 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 45 ms)
↳12 CdtProblem
↳13 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 BOUNDS(1, 1)
prime(0) → false
prime(s(0)) → false
prime(s(s(x))) → prime1(s(s(x)), s(x))
prime1(x, 0) → false
prime1(x, s(0)) → true
prime1(x, s(s(y))) → and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) → =(rem(x, y), 0)
As the TRS does not nest defined symbols, we have rc = irc.
prime(0) → false
prime(s(0)) → false
prime(s(s(x))) → prime1(s(s(x)), s(x))
prime1(x, 0) → false
prime1(x, s(0)) → true
prime1(x, s(s(y))) → and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) → =(rem(x, y), 0)
Tuples:
prime(0) → false
prime(s(0)) → false
prime(s(s(z0))) → prime1(s(s(z0)), s(z0))
prime1(z0, 0) → false
prime1(z0, s(0)) → true
prime1(z0, s(s(z1))) → and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1)))
divp(z0, z1) → =(rem(z0, z1), 0)
S tuples:
PRIME(0) → c
PRIME(s(0)) → c1
PRIME(s(s(z0))) → c2(PRIME1(s(s(z0)), s(z0)))
PRIME1(z0, 0) → c3
PRIME1(z0, s(0)) → c4
PRIME1(z0, s(s(z1))) → c5(DIVP(s(s(z1)), z0), PRIME1(z0, s(z1)))
DIVP(z0, z1) → c6
K tuples:none
PRIME(0) → c
PRIME(s(0)) → c1
PRIME(s(s(z0))) → c2(PRIME1(s(s(z0)), s(z0)))
PRIME1(z0, 0) → c3
PRIME1(z0, s(0)) → c4
PRIME1(z0, s(s(z1))) → c5(DIVP(s(s(z1)), z0), PRIME1(z0, s(z1)))
DIVP(z0, z1) → c6
prime, prime1, divp
PRIME, PRIME1, DIVP
c, c1, c2, c3, c4, c5, c6
Removed 5 trailing nodes:
PRIME(s(s(z0))) → c2(PRIME1(s(s(z0)), s(z0)))
PRIME(0) → c
DIVP(z0, z1) → c6
PRIME1(z0, 0) → c3
PRIME1(z0, s(0)) → c4
PRIME(s(0)) → c1
Tuples:
prime(0) → false
prime(s(0)) → false
prime(s(s(z0))) → prime1(s(s(z0)), s(z0))
prime1(z0, 0) → false
prime1(z0, s(0)) → true
prime1(z0, s(s(z1))) → and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1)))
divp(z0, z1) → =(rem(z0, z1), 0)
S tuples:
PRIME1(z0, s(s(z1))) → c5(DIVP(s(s(z1)), z0), PRIME1(z0, s(z1)))
K tuples:none
PRIME1(z0, s(s(z1))) → c5(DIVP(s(s(z1)), z0), PRIME1(z0, s(z1)))
prime, prime1, divp
PRIME1
c5
Tuples:
prime(0) → false
prime(s(0)) → false
prime(s(s(z0))) → prime1(s(s(z0)), s(z0))
prime1(z0, 0) → false
prime1(z0, s(0)) → true
prime1(z0, s(s(z1))) → and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1)))
divp(z0, z1) → =(rem(z0, z1), 0)
S tuples:
PRIME1(z0, s(s(z1))) → c5(PRIME1(z0, s(z1)))
K tuples:none
PRIME1(z0, s(s(z1))) → c5(PRIME1(z0, s(z1)))
prime, prime1, divp
PRIME1
c5
prime(0) → false
prime(s(0)) → false
prime(s(s(z0))) → prime1(s(s(z0)), s(z0))
prime1(z0, 0) → false
prime1(z0, s(0)) → true
prime1(z0, s(s(z1))) → and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1)))
divp(z0, z1) → =(rem(z0, z1), 0)
S tuples:
PRIME1(z0, s(s(z1))) → c5(PRIME1(z0, s(z1)))
K tuples:none
PRIME1(z0, s(s(z1))) → c5(PRIME1(z0, s(z1)))
PRIME1
c5
We considered the (Usable) Rules:none
PRIME1(z0, s(s(z1))) → c5(PRIME1(z0, s(z1)))
The order we found is given by the following interpretation:
PRIME1(z0, s(s(z1))) → c5(PRIME1(z0, s(z1)))
POL(PRIME1(x1, x2)) = x2
POL(c5(x1)) = x1
POL(s(x1)) = [1] + x1
S tuples:none
PRIME1(z0, s(s(z1))) → c5(PRIME1(z0, s(z1)))
Defined Rule Symbols:none
PRIME1(z0, s(s(z1))) → c5(PRIME1(z0, s(z1)))
PRIME1
c5