0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 13 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 0 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 75 ms)
↳12 CdtProblem
↳13 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 BOUNDS(1, 1)
sum(0) → 0
sum(s(x)) → +(sqr(s(x)), sum(x))
sqr(x) → *(x, x)
sum(s(x)) → +(*(s(x), s(x)), sum(x))
As the TRS does not nest defined symbols, we have rc = irc.
sum(0) → 0
sum(s(x)) → +(sqr(s(x)), sum(x))
sqr(x) → *(x, x)
sum(s(x)) → +(*(s(x), s(x)), sum(x))
Tuples:
sum(0) → 0
sum(s(z0)) → +(sqr(s(z0)), sum(z0))
sum(s(z0)) → +(*(s(z0), s(z0)), sum(z0))
sqr(z0) → *(z0, z0)
S tuples:
SUM(0) → c
SUM(s(z0)) → c1(SQR(s(z0)), SUM(z0))
SUM(s(z0)) → c2(SUM(z0))
SQR(z0) → c3
K tuples:none
SUM(0) → c
SUM(s(z0)) → c1(SQR(s(z0)), SUM(z0))
SUM(s(z0)) → c2(SUM(z0))
SQR(z0) → c3
sum, sqr
SUM, SQR
c, c1, c2, c3
SUM(0) → c
SQR(z0) → c3
Tuples:
sum(0) → 0
sum(s(z0)) → +(sqr(s(z0)), sum(z0))
sum(s(z0)) → +(*(s(z0), s(z0)), sum(z0))
sqr(z0) → *(z0, z0)
S tuples:
SUM(s(z0)) → c1(SQR(s(z0)), SUM(z0))
SUM(s(z0)) → c2(SUM(z0))
K tuples:none
SUM(s(z0)) → c1(SQR(s(z0)), SUM(z0))
SUM(s(z0)) → c2(SUM(z0))
sum, sqr
SUM
c1, c2
Tuples:
sum(0) → 0
sum(s(z0)) → +(sqr(s(z0)), sum(z0))
sum(s(z0)) → +(*(s(z0), s(z0)), sum(z0))
sqr(z0) → *(z0, z0)
S tuples:
SUM(s(z0)) → c2(SUM(z0))
SUM(s(z0)) → c1(SUM(z0))
K tuples:none
SUM(s(z0)) → c2(SUM(z0))
SUM(s(z0)) → c1(SUM(z0))
sum, sqr
SUM
c2, c1
sum(0) → 0
sum(s(z0)) → +(sqr(s(z0)), sum(z0))
sum(s(z0)) → +(*(s(z0), s(z0)), sum(z0))
sqr(z0) → *(z0, z0)
S tuples:
SUM(s(z0)) → c2(SUM(z0))
SUM(s(z0)) → c1(SUM(z0))
K tuples:none
SUM(s(z0)) → c2(SUM(z0))
SUM(s(z0)) → c1(SUM(z0))
SUM
c2, c1
We considered the (Usable) Rules:none
SUM(s(z0)) → c2(SUM(z0))
SUM(s(z0)) → c1(SUM(z0))
The order we found is given by the following interpretation:
SUM(s(z0)) → c2(SUM(z0))
SUM(s(z0)) → c1(SUM(z0))
POL(SUM(x1)) = x1
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(s(x1)) = [1] + x1
S tuples:none
SUM(s(z0)) → c2(SUM(z0))
SUM(s(z0)) → c1(SUM(z0))
Defined Rule Symbols:none
SUM(s(z0)) → c2(SUM(z0))
SUM(s(z0)) → c1(SUM(z0))
SUM
c2, c1