0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 13 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 150 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 100 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 120 ms)
↳12 CdtProblem
↳13 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 BOUNDS(1, 1)
sqr(0) → 0
sqr(s(x)) → +(sqr(x), s(double(x)))
double(0) → 0
double(s(x)) → s(s(double(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
sqr(s(x)) → s(+(sqr(x), double(x)))
The duplicating contexts are:
sqr(s([]))
The defined contexts are:
+([], x1)
+(x0, [])
+([], s(x1))
+(x0, s([]))
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
sqr(0) → 0
sqr(s(x)) → +(sqr(x), s(double(x)))
double(0) → 0
double(s(x)) → s(s(double(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
sqr(s(x)) → s(+(sqr(x), double(x)))
Tuples:
sqr(0) → 0
sqr(s(z0)) → +(sqr(z0), s(double(z0)))
sqr(s(z0)) → s(+(sqr(z0), double(z0)))
double(0) → 0
double(s(z0)) → s(s(double(z0)))
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
S tuples:
SQR(0) → c
SQR(s(z0)) → c1(+'(sqr(z0), s(double(z0))), SQR(z0), DOUBLE(z0))
SQR(s(z0)) → c2(+'(sqr(z0), double(z0)), SQR(z0), DOUBLE(z0))
DOUBLE(0) → c3
DOUBLE(s(z0)) → c4(DOUBLE(z0))
+'(z0, 0) → c5
+'(z0, s(z1)) → c6(+'(z0, z1))
K tuples:none
SQR(0) → c
SQR(s(z0)) → c1(+'(sqr(z0), s(double(z0))), SQR(z0), DOUBLE(z0))
SQR(s(z0)) → c2(+'(sqr(z0), double(z0)), SQR(z0), DOUBLE(z0))
DOUBLE(0) → c3
DOUBLE(s(z0)) → c4(DOUBLE(z0))
+'(z0, 0) → c5
+'(z0, s(z1)) → c6(+'(z0, z1))
sqr, double, +
SQR, DOUBLE, +'
c, c1, c2, c3, c4, c5, c6
SQR(0) → c
DOUBLE(0) → c3
+'(z0, 0) → c5
Tuples:
sqr(0) → 0
sqr(s(z0)) → +(sqr(z0), s(double(z0)))
sqr(s(z0)) → s(+(sqr(z0), double(z0)))
double(0) → 0
double(s(z0)) → s(s(double(z0)))
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
S tuples:
SQR(s(z0)) → c1(+'(sqr(z0), s(double(z0))), SQR(z0), DOUBLE(z0))
SQR(s(z0)) → c2(+'(sqr(z0), double(z0)), SQR(z0), DOUBLE(z0))
DOUBLE(s(z0)) → c4(DOUBLE(z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
K tuples:none
SQR(s(z0)) → c1(+'(sqr(z0), s(double(z0))), SQR(z0), DOUBLE(z0))
SQR(s(z0)) → c2(+'(sqr(z0), double(z0)), SQR(z0), DOUBLE(z0))
DOUBLE(s(z0)) → c4(DOUBLE(z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
sqr, double, +
SQR, DOUBLE, +'
c1, c2, c4, c6
We considered the (Usable) Rules:none
SQR(s(z0)) → c1(+'(sqr(z0), s(double(z0))), SQR(z0), DOUBLE(z0))
SQR(s(z0)) → c2(+'(sqr(z0), double(z0)), SQR(z0), DOUBLE(z0))
The order we found is given by the following interpretation:
SQR(s(z0)) → c1(+'(sqr(z0), s(double(z0))), SQR(z0), DOUBLE(z0))
SQR(s(z0)) → c2(+'(sqr(z0), double(z0)), SQR(z0), DOUBLE(z0))
DOUBLE(s(z0)) → c4(DOUBLE(z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
POL(+(x1, x2)) = 0
POL(+'(x1, x2)) = 0
POL(0) = 0
POL(DOUBLE(x1)) = 0
POL(SQR(x1)) = x1
POL(c1(x1, x2, x3)) = x1 + x2 + x3
POL(c2(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1)) = x1
POL(c6(x1)) = x1
POL(double(x1)) = 0
POL(s(x1)) = [1] + x1
POL(sqr(x1)) = 0
Tuples:
sqr(0) → 0
sqr(s(z0)) → +(sqr(z0), s(double(z0)))
sqr(s(z0)) → s(+(sqr(z0), double(z0)))
double(0) → 0
double(s(z0)) → s(s(double(z0)))
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
S tuples:
SQR(s(z0)) → c1(+'(sqr(z0), s(double(z0))), SQR(z0), DOUBLE(z0))
SQR(s(z0)) → c2(+'(sqr(z0), double(z0)), SQR(z0), DOUBLE(z0))
DOUBLE(s(z0)) → c4(DOUBLE(z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
K tuples:
DOUBLE(s(z0)) → c4(DOUBLE(z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
Defined Rule Symbols:
SQR(s(z0)) → c1(+'(sqr(z0), s(double(z0))), SQR(z0), DOUBLE(z0))
SQR(s(z0)) → c2(+'(sqr(z0), double(z0)), SQR(z0), DOUBLE(z0))
sqr, double, +
SQR, DOUBLE, +'
c1, c2, c4, c6
We considered the (Usable) Rules:none
DOUBLE(s(z0)) → c4(DOUBLE(z0))
The order we found is given by the following interpretation:
SQR(s(z0)) → c1(+'(sqr(z0), s(double(z0))), SQR(z0), DOUBLE(z0))
SQR(s(z0)) → c2(+'(sqr(z0), double(z0)), SQR(z0), DOUBLE(z0))
DOUBLE(s(z0)) → c4(DOUBLE(z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
POL(+(x1, x2)) = [2]x1 + x2
POL(+'(x1, x2)) = [2]
POL(0) = [1]
POL(DOUBLE(x1)) = [2] + [2]x1
POL(SQR(x1)) = x12
POL(c1(x1, x2, x3)) = x1 + x2 + x3
POL(c2(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1)) = x1
POL(c6(x1)) = x1
POL(double(x1)) = 0
POL(s(x1)) = [2] + x1
POL(sqr(x1)) = 0
Tuples:
sqr(0) → 0
sqr(s(z0)) → +(sqr(z0), s(double(z0)))
sqr(s(z0)) → s(+(sqr(z0), double(z0)))
double(0) → 0
double(s(z0)) → s(s(double(z0)))
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
S tuples:
SQR(s(z0)) → c1(+'(sqr(z0), s(double(z0))), SQR(z0), DOUBLE(z0))
SQR(s(z0)) → c2(+'(sqr(z0), double(z0)), SQR(z0), DOUBLE(z0))
DOUBLE(s(z0)) → c4(DOUBLE(z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
K tuples:
+'(z0, s(z1)) → c6(+'(z0, z1))
Defined Rule Symbols:
SQR(s(z0)) → c1(+'(sqr(z0), s(double(z0))), SQR(z0), DOUBLE(z0))
SQR(s(z0)) → c2(+'(sqr(z0), double(z0)), SQR(z0), DOUBLE(z0))
DOUBLE(s(z0)) → c4(DOUBLE(z0))
sqr, double, +
SQR, DOUBLE, +'
c1, c2, c4, c6
We considered the (Usable) Rules:
+'(z0, s(z1)) → c6(+'(z0, z1))
And the Tuples:
double(0) → 0
double(s(z0)) → s(s(double(z0)))
The order we found is given by the following interpretation:
SQR(s(z0)) → c1(+'(sqr(z0), s(double(z0))), SQR(z0), DOUBLE(z0))
SQR(s(z0)) → c2(+'(sqr(z0), double(z0)), SQR(z0), DOUBLE(z0))
DOUBLE(s(z0)) → c4(DOUBLE(z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
POL(+(x1, x2)) = [2] + x1 + [2]x2 + x22 + x12
POL(+'(x1, x2)) = x2
POL(0) = 0
POL(DOUBLE(x1)) = x1
POL(SQR(x1)) = x1 + x12
POL(c1(x1, x2, x3)) = x1 + x2 + x3
POL(c2(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1)) = x1
POL(c6(x1)) = x1
POL(double(x1)) = [2]x1
POL(s(x1)) = [2] + x1
POL(sqr(x1)) = [2]
Tuples:
sqr(0) → 0
sqr(s(z0)) → +(sqr(z0), s(double(z0)))
sqr(s(z0)) → s(+(sqr(z0), double(z0)))
double(0) → 0
double(s(z0)) → s(s(double(z0)))
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
S tuples:none
SQR(s(z0)) → c1(+'(sqr(z0), s(double(z0))), SQR(z0), DOUBLE(z0))
SQR(s(z0)) → c2(+'(sqr(z0), double(z0)), SQR(z0), DOUBLE(z0))
DOUBLE(s(z0)) → c4(DOUBLE(z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
Defined Rule Symbols:
SQR(s(z0)) → c1(+'(sqr(z0), s(double(z0))), SQR(z0), DOUBLE(z0))
SQR(s(z0)) → c2(+'(sqr(z0), double(z0)), SQR(z0), DOUBLE(z0))
DOUBLE(s(z0)) → c4(DOUBLE(z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
sqr, double, +
SQR, DOUBLE, +'
c1, c2, c4, c6