0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 23 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 92 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 51 ms)
↳10 CdtProblem
↳11 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 BOUNDS(1, 1)
sum(0) → 0
sum(s(x)) → +(sum(x), s(x))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
The duplicating contexts are:
sum(s([]))
The defined contexts are:
+([], s(x1))
+([], x1)
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
sum(0) → 0
sum(s(x)) → +(sum(x), s(x))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
Tuples:
sum(0) → 0
sum(s(z0)) → +(sum(z0), s(z0))
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
S tuples:
SUM(0) → c
SUM(s(z0)) → c1(+'(sum(z0), s(z0)), SUM(z0))
+'(z0, 0) → c2
+'(z0, s(z1)) → c3(+'(z0, z1))
K tuples:none
SUM(0) → c
SUM(s(z0)) → c1(+'(sum(z0), s(z0)), SUM(z0))
+'(z0, 0) → c2
+'(z0, s(z1)) → c3(+'(z0, z1))
sum, +
SUM, +'
c, c1, c2, c3
SUM(0) → c
+'(z0, 0) → c2
Tuples:
sum(0) → 0
sum(s(z0)) → +(sum(z0), s(z0))
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
S tuples:
SUM(s(z0)) → c1(+'(sum(z0), s(z0)), SUM(z0))
+'(z0, s(z1)) → c3(+'(z0, z1))
K tuples:none
SUM(s(z0)) → c1(+'(sum(z0), s(z0)), SUM(z0))
+'(z0, s(z1)) → c3(+'(z0, z1))
sum, +
SUM, +'
c1, c3
We considered the (Usable) Rules:none
SUM(s(z0)) → c1(+'(sum(z0), s(z0)), SUM(z0))
The order we found is given by the following interpretation:
SUM(s(z0)) → c1(+'(sum(z0), s(z0)), SUM(z0))
+'(z0, s(z1)) → c3(+'(z0, z1))
POL(+(x1, x2)) = 0
POL(+'(x1, x2)) = 0
POL(0) = 0
POL(SUM(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(s(x1)) = [1] + x1
POL(sum(x1)) = 0
Tuples:
sum(0) → 0
sum(s(z0)) → +(sum(z0), s(z0))
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
S tuples:
SUM(s(z0)) → c1(+'(sum(z0), s(z0)), SUM(z0))
+'(z0, s(z1)) → c3(+'(z0, z1))
K tuples:
+'(z0, s(z1)) → c3(+'(z0, z1))
Defined Rule Symbols:
SUM(s(z0)) → c1(+'(sum(z0), s(z0)), SUM(z0))
sum, +
SUM, +'
c1, c3
We considered the (Usable) Rules:none
+'(z0, s(z1)) → c3(+'(z0, z1))
The order we found is given by the following interpretation:
SUM(s(z0)) → c1(+'(sum(z0), s(z0)), SUM(z0))
+'(z0, s(z1)) → c3(+'(z0, z1))
POL(+(x1, x2)) = x2 + x1·x2
POL(+'(x1, x2)) = [1] + x2
POL(0) = [1]
POL(SUM(x1)) = [2]x1 + x12
POL(c1(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(s(x1)) = [2] + x1
POL(sum(x1)) = [2]
Tuples:
sum(0) → 0
sum(s(z0)) → +(sum(z0), s(z0))
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
S tuples:none
SUM(s(z0)) → c1(+'(sum(z0), s(z0)), SUM(z0))
+'(z0, s(z1)) → c3(+'(z0, z1))
Defined Rule Symbols:
SUM(s(z0)) → c1(+'(sum(z0), s(z0)), SUM(z0))
+'(z0, s(z1)) → c3(+'(z0, z1))
sum, +
SUM, +'
c1, c3