* Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: sum(0()) -> 0() sum(s(x)) -> +(sum(x),s(x)) sum1(0()) -> 0() sum1(s(x)) -> s(+(sum1(x),+(x,x))) - Signature: {sum/1,sum1/1} / {+/2,0/0,s/1} - Obligation: runtime complexity wrt. defined symbols {sum,sum1} and constructors {+,0,s} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak dependency pairs: Strict DPs sum#(0()) -> c_1() sum#(s(x)) -> c_2(sum#(x),x) sum1#(0()) -> c_3() sum1#(s(x)) -> c_4(sum1#(x),x,x) Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(0()) -> c_1() sum#(s(x)) -> c_2(sum#(x),x) sum1#(0()) -> c_3() sum1#(s(x)) -> c_4(sum1#(x),x,x) - Strict TRS: sum(0()) -> 0() sum(s(x)) -> +(sum(x),s(x)) sum1(0()) -> 0() sum1(s(x)) -> s(+(sum1(x),+(x,x))) - Signature: {sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/3} - Obligation: runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: sum#(0()) -> c_1() sum#(s(x)) -> c_2(sum#(x),x) sum1#(0()) -> c_3() sum1#(s(x)) -> c_4(sum1#(x),x,x) * Step 3: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(0()) -> c_1() sum#(s(x)) -> c_2(sum#(x),x) sum1#(0()) -> c_3() sum1#(s(x)) -> c_4(sum1#(x),x,x) - Signature: {sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/3} - Obligation: runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3} by application of Pre({1,3}) = {2,4}. Here rules are labelled as follows: 1: sum#(0()) -> c_1() 2: sum#(s(x)) -> c_2(sum#(x),x) 3: sum1#(0()) -> c_3() 4: sum1#(s(x)) -> c_4(sum1#(x),x,x) * Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(s(x)) -> c_2(sum#(x),x) sum1#(s(x)) -> c_4(sum1#(x),x,x) - Weak DPs: sum#(0()) -> c_1() sum1#(0()) -> c_3() - Signature: {sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/3} - Obligation: runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:sum#(s(x)) -> c_2(sum#(x),x) -->_2 sum1#(s(x)) -> c_4(sum1#(x),x,x):2 -->_2 sum1#(0()) -> c_3():4 -->_2 sum#(0()) -> c_1():3 -->_1 sum#(0()) -> c_1():3 -->_2 sum#(s(x)) -> c_2(sum#(x),x):1 -->_1 sum#(s(x)) -> c_2(sum#(x),x):1 2:S:sum1#(s(x)) -> c_4(sum1#(x),x,x) -->_3 sum1#(0()) -> c_3():4 -->_2 sum1#(0()) -> c_3():4 -->_1 sum1#(0()) -> c_3():4 -->_3 sum#(0()) -> c_1():3 -->_2 sum#(0()) -> c_1():3 -->_3 sum1#(s(x)) -> c_4(sum1#(x),x,x):2 -->_2 sum1#(s(x)) -> c_4(sum1#(x),x,x):2 -->_1 sum1#(s(x)) -> c_4(sum1#(x),x,x):2 -->_3 sum#(s(x)) -> c_2(sum#(x),x):1 -->_2 sum#(s(x)) -> c_2(sum#(x),x):1 3:W:sum#(0()) -> c_1() 4:W:sum1#(0()) -> c_3() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: sum#(0()) -> c_1() 4: sum1#(0()) -> c_3() * Step 5: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(s(x)) -> c_2(sum#(x),x) sum1#(s(x)) -> c_4(sum1#(x),x,x) - Signature: {sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/3} - Obligation: runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: sum#(s(x)) -> c_2(sum#(x),x) The strictly oriented rules are moved into the weak component. ** Step 5.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(s(x)) -> c_2(sum#(x),x) sum1#(s(x)) -> c_4(sum1#(x),x,x) - Signature: {sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/3} - Obligation: runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_4) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(+) = [1] x1 + [1] x2 + [0] p(0) = [2] p(s) = [1] x1 + [2] p(sum) = [8] x1 + [1] p(sum1) = [0] p(sum#) = [1] x1 + [0] p(sum1#) = [0] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [8] x1 + [0] Following rules are strictly oriented: sum#(s(x)) = [1] x + [2] > [1] x + [0] = c_2(sum#(x),x) Following rules are (at-least) weakly oriented: sum1#(s(x)) = [0] >= [0] = c_4(sum1#(x),x,x) ** Step 5.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: sum1#(s(x)) -> c_4(sum1#(x),x,x) - Weak DPs: sum#(s(x)) -> c_2(sum#(x),x) - Signature: {sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/3} - Obligation: runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ** Step 5.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum1#(s(x)) -> c_4(sum1#(x),x,x) - Weak DPs: sum#(s(x)) -> c_2(sum#(x),x) - Signature: {sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/3} - Obligation: runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: sum1#(s(x)) -> c_4(sum1#(x),x,x) The strictly oriented rules are moved into the weak component. *** Step 5.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum1#(s(x)) -> c_4(sum1#(x),x,x) - Weak DPs: sum#(s(x)) -> c_2(sum#(x),x) - Signature: {sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/3} - Obligation: runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_4) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(+) = [1] x1 + [1] x2 + [1] p(0) = [0] p(s) = [1] x1 + [2] p(sum) = [1] x1 + [0] p(sum1) = [1] x1 + [0] p(sum#) = [6] x1 + [0] p(sum1#) = [8] x1 + [4] p(c_1) = [1] p(c_2) = [1] x1 + [12] p(c_3) = [0] p(c_4) = [1] x1 + [0] Following rules are strictly oriented: sum1#(s(x)) = [8] x + [20] > [8] x + [4] = c_4(sum1#(x),x,x) Following rules are (at-least) weakly oriented: sum#(s(x)) = [6] x + [12] >= [6] x + [12] = c_2(sum#(x),x) *** Step 5.b:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: sum#(s(x)) -> c_2(sum#(x),x) sum1#(s(x)) -> c_4(sum1#(x),x,x) - Signature: {sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/3} - Obligation: runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 5.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: sum#(s(x)) -> c_2(sum#(x),x) sum1#(s(x)) -> c_4(sum1#(x),x,x) - Signature: {sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/3} - Obligation: runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:sum#(s(x)) -> c_2(sum#(x),x) -->_2 sum1#(s(x)) -> c_4(sum1#(x),x,x):2 -->_2 sum#(s(x)) -> c_2(sum#(x),x):1 -->_1 sum#(s(x)) -> c_2(sum#(x),x):1 2:W:sum1#(s(x)) -> c_4(sum1#(x),x,x) -->_3 sum1#(s(x)) -> c_4(sum1#(x),x,x):2 -->_2 sum1#(s(x)) -> c_4(sum1#(x),x,x):2 -->_1 sum1#(s(x)) -> c_4(sum1#(x),x,x):2 -->_3 sum#(s(x)) -> c_2(sum#(x),x):1 -->_2 sum#(s(x)) -> c_2(sum#(x),x):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: sum#(s(x)) -> c_2(sum#(x),x) 2: sum1#(s(x)) -> c_4(sum1#(x),x,x) *** Step 5.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {sum/1,sum1/1,sum#/1,sum1#/1} / {+/2,0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/3} - Obligation: runtime complexity wrt. defined symbols {sum#,sum1#} and constructors {+,0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))