0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 22 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtUsableRulesProof (⇔, 0 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 75 ms)
↳10 CdtProblem
↳11 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 BOUNDS(1, 1)
sum(0) → 0
sum(s(x)) → +(sum(x), s(x))
sum1(0) → 0
sum1(s(x)) → s(+(sum1(x), +(x, x)))
As the TRS does not nest defined symbols, we have rc = irc.
sum(0) → 0
sum(s(x)) → +(sum(x), s(x))
sum1(0) → 0
sum1(s(x)) → s(+(sum1(x), +(x, x)))
Tuples:
sum(0) → 0
sum(s(z0)) → +(sum(z0), s(z0))
sum1(0) → 0
sum1(s(z0)) → s(+(sum1(z0), +(z0, z0)))
S tuples:
SUM(0) → c
SUM(s(z0)) → c1(SUM(z0))
SUM1(0) → c2
SUM1(s(z0)) → c3(SUM1(z0))
K tuples:none
SUM(0) → c
SUM(s(z0)) → c1(SUM(z0))
SUM1(0) → c2
SUM1(s(z0)) → c3(SUM1(z0))
sum, sum1
SUM, SUM1
c, c1, c2, c3
SUM(0) → c
SUM1(0) → c2
Tuples:
sum(0) → 0
sum(s(z0)) → +(sum(z0), s(z0))
sum1(0) → 0
sum1(s(z0)) → s(+(sum1(z0), +(z0, z0)))
S tuples:
SUM(s(z0)) → c1(SUM(z0))
SUM1(s(z0)) → c3(SUM1(z0))
K tuples:none
SUM(s(z0)) → c1(SUM(z0))
SUM1(s(z0)) → c3(SUM1(z0))
sum, sum1
SUM, SUM1
c1, c3
sum(0) → 0
sum(s(z0)) → +(sum(z0), s(z0))
sum1(0) → 0
sum1(s(z0)) → s(+(sum1(z0), +(z0, z0)))
S tuples:
SUM(s(z0)) → c1(SUM(z0))
SUM1(s(z0)) → c3(SUM1(z0))
K tuples:none
SUM(s(z0)) → c1(SUM(z0))
SUM1(s(z0)) → c3(SUM1(z0))
SUM, SUM1
c1, c3
We considered the (Usable) Rules:none
SUM(s(z0)) → c1(SUM(z0))
SUM1(s(z0)) → c3(SUM1(z0))
The order we found is given by the following interpretation:
SUM(s(z0)) → c1(SUM(z0))
SUM1(s(z0)) → c3(SUM1(z0))
POL(SUM(x1)) = x1
POL(SUM1(x1)) = x1
POL(c1(x1)) = x1
POL(c3(x1)) = x1
POL(s(x1)) = [2] + x1
S tuples:none
SUM(s(z0)) → c1(SUM(z0))
SUM1(s(z0)) → c3(SUM1(z0))
Defined Rule Symbols:none
SUM(s(z0)) → c1(SUM(z0))
SUM1(s(z0)) → c3(SUM1(z0))
SUM, SUM1
c1, c3