0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 14 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (ComplexityIfPolyImplication, 0 ms)
↳6 CdtProblem
↳7 CdtUsableRulesProof (⇔, 0 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 132 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 110 ms)
↳12 CdtProblem
↳13 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 BOUNDS(1, 1)
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
The duplicating contexts are:
f(s([]))
g(s([]), y)
The defined contexts are:
g(x0, [])
g(x0, s([]))
+([], s(x1))
+([], x1)
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
Tuples:
f(0) → 1
f(s(z0)) → g(z0, s(z0))
g(0, z0) → z0
g(s(z0), z1) → g(z0, +(z1, s(z0)))
g(s(z0), z1) → g(z0, s(+(z1, z0)))
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
S tuples:
F(0) → c
F(s(z0)) → c1(G(z0, s(z0)))
G(0, z0) → c2
G(s(z0), z1) → c3(G(z0, +(z1, s(z0))), +'(z1, s(z0)))
G(s(z0), z1) → c4(G(z0, s(+(z1, z0))), +'(z1, z0))
+'(z0, 0) → c5
+'(z0, s(z1)) → c6(+'(z0, z1))
K tuples:none
F(0) → c
F(s(z0)) → c1(G(z0, s(z0)))
G(0, z0) → c2
G(s(z0), z1) → c3(G(z0, +(z1, s(z0))), +'(z1, s(z0)))
G(s(z0), z1) → c4(G(z0, s(+(z1, z0))), +'(z1, z0))
+'(z0, 0) → c5
+'(z0, s(z1)) → c6(+'(z0, z1))
f, g, +
F, G, +'
c, c1, c2, c3, c4, c5, c6
Removed 3 trailing nodes:
F(s(z0)) → c1(G(z0, s(z0)))
+'(z0, 0) → c5
F(0) → c
G(0, z0) → c2
Tuples:
f(0) → 1
f(s(z0)) → g(z0, s(z0))
g(0, z0) → z0
g(s(z0), z1) → g(z0, +(z1, s(z0)))
g(s(z0), z1) → g(z0, s(+(z1, z0)))
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
S tuples:
G(s(z0), z1) → c3(G(z0, +(z1, s(z0))), +'(z1, s(z0)))
G(s(z0), z1) → c4(G(z0, s(+(z1, z0))), +'(z1, z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
K tuples:none
G(s(z0), z1) → c3(G(z0, +(z1, s(z0))), +'(z1, s(z0)))
G(s(z0), z1) → c4(G(z0, s(+(z1, z0))), +'(z1, z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
f, g, +
G, +'
c3, c4, c6
f(0) → 1
f(s(z0)) → g(z0, s(z0))
g(0, z0) → z0
g(s(z0), z1) → g(z0, +(z1, s(z0)))
g(s(z0), z1) → g(z0, s(+(z1, z0)))
Tuples:
+(z0, s(z1)) → s(+(z0, z1))
+(z0, 0) → z0
S tuples:
G(s(z0), z1) → c3(G(z0, +(z1, s(z0))), +'(z1, s(z0)))
G(s(z0), z1) → c4(G(z0, s(+(z1, z0))), +'(z1, z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
K tuples:none
G(s(z0), z1) → c3(G(z0, +(z1, s(z0))), +'(z1, s(z0)))
G(s(z0), z1) → c4(G(z0, s(+(z1, z0))), +'(z1, z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
+
G, +'
c3, c4, c6
We considered the (Usable) Rules:none
G(s(z0), z1) → c3(G(z0, +(z1, s(z0))), +'(z1, s(z0)))
G(s(z0), z1) → c4(G(z0, s(+(z1, z0))), +'(z1, z0))
The order we found is given by the following interpretation:
G(s(z0), z1) → c3(G(z0, +(z1, s(z0))), +'(z1, s(z0)))
G(s(z0), z1) → c4(G(z0, s(+(z1, z0))), +'(z1, z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
POL(+(x1, x2)) = 0
POL(+'(x1, x2)) = 0
POL(0) = 0
POL(G(x1, x2)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(s(x1)) = [1] + x1
Tuples:
+(z0, s(z1)) → s(+(z0, z1))
+(z0, 0) → z0
S tuples:
G(s(z0), z1) → c3(G(z0, +(z1, s(z0))), +'(z1, s(z0)))
G(s(z0), z1) → c4(G(z0, s(+(z1, z0))), +'(z1, z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
K tuples:
+'(z0, s(z1)) → c6(+'(z0, z1))
Defined Rule Symbols:
G(s(z0), z1) → c3(G(z0, +(z1, s(z0))), +'(z1, s(z0)))
G(s(z0), z1) → c4(G(z0, s(+(z1, z0))), +'(z1, z0))
+
G, +'
c3, c4, c6
We considered the (Usable) Rules:none
+'(z0, s(z1)) → c6(+'(z0, z1))
The order we found is given by the following interpretation:
G(s(z0), z1) → c3(G(z0, +(z1, s(z0))), +'(z1, s(z0)))
G(s(z0), z1) → c4(G(z0, s(+(z1, z0))), +'(z1, z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
POL(+(x1, x2)) = [2]x1 + [2]x22 + [2]x1·x2
POL(+'(x1, x2)) = [2]x2
POL(0) = [2]
POL(G(x1, x2)) = [2]x1 + x12
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(s(x1)) = [1] + x1
Tuples:
+(z0, s(z1)) → s(+(z0, z1))
+(z0, 0) → z0
S tuples:none
G(s(z0), z1) → c3(G(z0, +(z1, s(z0))), +'(z1, s(z0)))
G(s(z0), z1) → c4(G(z0, s(+(z1, z0))), +'(z1, z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
Defined Rule Symbols:
G(s(z0), z1) → c3(G(z0, +(z1, s(z0))), +'(z1, s(z0)))
G(s(z0), z1) → c4(G(z0, s(+(z1, z0))), +'(z1, z0))
+'(z0, s(z1)) → c6(+'(z0, z1))
+
G, +'
c3, c4, c6