* Step 1: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) - Signature: {f/2} / {0/0,1/0,2/0,g/2,i/1} - Obligation: runtime complexity wrt. defined symbols {f} and constructors {0,1,2,g,i} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(f) = {2}, uargs(g) = {1,2} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = 0 p(1) = 0 p(2) = 0 p(f) = 1 + x1 + x1*x2 + 2*x1^2 + x2 p(g) = 1 + x1 + x2 p(i) = 0 Following rules are strictly oriented: f(x,0()) = 1 + x + 2*x^2 > x = x f(0(),y) = 1 + y > y = y f(1(),g(x,y)) = 2 + x + y > x = x f(2(),g(x,y)) = 2 + x + y > y = y f(f(x,y),z) = 4 + 5*x + 9*x*y + x*y*z + 4*x*y^2 + x*z + 12*x^2 + 12*x^2*y + 2*x^2*y^2 + 2*x^2*z + 8*x^3 + 8*x^3*y + 8*x^4 + 5*y + y*z + 2*y^2 + 2*z > 2 + 2*x + x*y + x*y*z + 2*x*y^2 + x*z + 2*x^2 + y + y*z + 2*y^2 + z = f(x,f(y,z)) f(g(x,y),z) = 4 + 5*x + 4*x*y + x*z + 2*x^2 + 5*y + y*z + 2*y^2 + 2*z > 3 + x + x*z + 2*x^2 + y + y*z + 2*y^2 + 2*z = g(f(x,z),f(y,z)) f(i(x),y) = 1 + y > 0 = i(x) Following rules are (at-least) weakly oriented: * Step 2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) - Signature: {f/2} / {0/0,1/0,2/0,g/2,i/1} - Obligation: runtime complexity wrt. defined symbols {f} and constructors {0,1,2,g,i} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^2))