0 CpxTRS
↳1 NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID), 12 ms)
↳2 CpxTRS
↳3 RcToIrcProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTRS
↳5 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 0 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 68 ms)
↳12 CdtProblem
↳13 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 BOUNDS(1, 1)
f(0, y) → y
f(x, 0) → x
f(i(x), y) → i(x)
f(f(x, y), z) → f(x, f(y, z))
f(g(x, y), z) → g(f(x, z), f(y, z))
f(1, g(x, y)) → x
f(2, g(x, y)) → y
f(g(x, y), z) → g(f(x, z), f(y, z))
f(2, g(x, y)) → y
f(1, g(x, y)) → x
f(i(x), y) → i(x)
f(0, y) → y
f(x, 0) → x
As the TRS does not nest defined symbols, we have rc = irc.
f(g(x, y), z) → g(f(x, z), f(y, z))
f(2, g(x, y)) → y
f(1, g(x, y)) → x
f(i(x), y) → i(x)
f(0, y) → y
f(x, 0) → x
Tuples:
f(g(z0, z1), z2) → g(f(z0, z2), f(z1, z2))
f(2, g(z0, z1)) → z1
f(1, g(z0, z1)) → z0
f(i(z0), z1) → i(z0)
f(0, z0) → z0
f(z0, 0) → z0
S tuples:
F(g(z0, z1), z2) → c(F(z0, z2), F(z1, z2))
F(2, g(z0, z1)) → c1
F(1, g(z0, z1)) → c2
F(i(z0), z1) → c3
F(0, z0) → c4
F(z0, 0) → c5
K tuples:none
F(g(z0, z1), z2) → c(F(z0, z2), F(z1, z2))
F(2, g(z0, z1)) → c1
F(1, g(z0, z1)) → c2
F(i(z0), z1) → c3
F(0, z0) → c4
F(z0, 0) → c5
f
F
c, c1, c2, c3, c4, c5
F(i(z0), z1) → c3
F(1, g(z0, z1)) → c2
F(z0, 0) → c5
F(0, z0) → c4
F(2, g(z0, z1)) → c1
Tuples:
f(g(z0, z1), z2) → g(f(z0, z2), f(z1, z2))
f(2, g(z0, z1)) → z1
f(1, g(z0, z1)) → z0
f(i(z0), z1) → i(z0)
f(0, z0) → z0
f(z0, 0) → z0
S tuples:
F(g(z0, z1), z2) → c(F(z0, z2), F(z1, z2))
K tuples:none
F(g(z0, z1), z2) → c(F(z0, z2), F(z1, z2))
f
F
c
f(g(z0, z1), z2) → g(f(z0, z2), f(z1, z2))
f(2, g(z0, z1)) → z1
f(1, g(z0, z1)) → z0
f(i(z0), z1) → i(z0)
f(0, z0) → z0
f(z0, 0) → z0
S tuples:
F(g(z0, z1), z2) → c(F(z0, z2), F(z1, z2))
K tuples:none
F(g(z0, z1), z2) → c(F(z0, z2), F(z1, z2))
F
c
We considered the (Usable) Rules:none
F(g(z0, z1), z2) → c(F(z0, z2), F(z1, z2))
The order we found is given by the following interpretation:
F(g(z0, z1), z2) → c(F(z0, z2), F(z1, z2))
POL(F(x1, x2)) = [2] + [2]x1
POL(c(x1, x2)) = x1 + x2
POL(g(x1, x2)) = [2] + x1 + x2
S tuples:none
F(g(z0, z1), z2) → c(F(z0, z2), F(z1, z2))
Defined Rule Symbols:none
F(g(z0, z1), z2) → c(F(z0, z2), F(z1, z2))
F
c