### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))

Rewrite Strategy: FULL

### (1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
minus(h(x)) →+ h(minus(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / h(x)].
The result substitution is [ ].

### (3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

### (4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))

S is empty.
Rewrite Strategy: FULL

Infered types.

### (6) Obligation:

TRS:
Rules:
minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))

Types:
minus :: h:f → h:f
h :: h:f → h:f
f :: h:f → h:f → h:f
hole_h:f1_0 :: h:f
gen_h:f2_0 :: Nat → h:f

### (7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
minus

### (8) Obligation:

TRS:
Rules:
minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))

Types:
minus :: h:f → h:f
h :: h:f → h:f
f :: h:f → h:f → h:f
hole_h:f1_0 :: h:f
gen_h:f2_0 :: Nat → h:f

Generator Equations:
gen_h:f2_0(0) ⇔ hole_h:f1_0
gen_h:f2_0(+(x, 1)) ⇔ h(gen_h:f2_0(x))

The following defined symbols remain to be analysed:
minus

### (9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
minus(gen_h:f2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

Induction Base:
minus(gen_h:f2_0(+(1, 0)))

Induction Step:
minus(gen_h:f2_0(+(1, +(n4_0, 1)))) →RΩ(1)
h(minus(gen_h:f2_0(+(1, n4_0)))) →IH
h(*3_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (11) Obligation:

TRS:
Rules:
minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))

Types:
minus :: h:f → h:f
h :: h:f → h:f
f :: h:f → h:f → h:f
hole_h:f1_0 :: h:f
gen_h:f2_0 :: Nat → h:f

Lemmas:
minus(gen_h:f2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

Generator Equations:
gen_h:f2_0(0) ⇔ hole_h:f1_0
gen_h:f2_0(+(x, 1)) ⇔ h(gen_h:f2_0(x))

No more defined symbols left to analyse.

### (12) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_h:f2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

### (14) Obligation:

TRS:
Rules:
minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))

Types:
minus :: h:f → h:f
h :: h:f → h:f
f :: h:f → h:f → h:f
hole_h:f1_0 :: h:f
gen_h:f2_0 :: Nat → h:f

Lemmas:
minus(gen_h:f2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

Generator Equations:
gen_h:f2_0(0) ⇔ hole_h:f1_0
gen_h:f2_0(+(x, 1)) ⇔ h(gen_h:f2_0(x))

No more defined symbols left to analyse.

### (15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_h:f2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)