### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(a, a) → f(a, b)
f(a, b) → f(s(a), c)
f(s(X), c) → f(X, c)
f(c, c) → f(a, a)

Rewrite Strategy: FULL

### (1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(s(X), c) →+ f(X, c)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [X / s(X)].
The result substitution is [ ].

### (3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

### (4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

f(a, a) → f(a, b)
f(a, b) → f(s(a), c)
f(s(X), c) → f(X, c)
f(c, c) → f(a, a)

S is empty.
Rewrite Strategy: FULL

Infered types.

### (6) Obligation:

TRS:
Rules:
f(a, a) → f(a, b)
f(a, b) → f(s(a), c)
f(s(X), c) → f(X, c)
f(c, c) → f(a, a)

Types:
f :: a:b:s:c → a:b:s:c → f
a :: a:b:s:c
b :: a:b:s:c
s :: a:b:s:c → a:b:s:c
c :: a:b:s:c
hole_f1_0 :: f
hole_a:b:s:c2_0 :: a:b:s:c
gen_a:b:s:c3_0 :: Nat → a:b:s:c

### (7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
f

### (8) Obligation:

TRS:
Rules:
f(a, a) → f(a, b)
f(a, b) → f(s(a), c)
f(s(X), c) → f(X, c)
f(c, c) → f(a, a)

Types:
f :: a:b:s:c → a:b:s:c → f
a :: a:b:s:c
b :: a:b:s:c
s :: a:b:s:c → a:b:s:c
c :: a:b:s:c
hole_f1_0 :: f
hole_a:b:s:c2_0 :: a:b:s:c
gen_a:b:s:c3_0 :: Nat → a:b:s:c

Generator Equations:
gen_a:b:s:c3_0(0) ⇔ c
gen_a:b:s:c3_0(+(x, 1)) ⇔ s(gen_a:b:s:c3_0(x))

The following defined symbols remain to be analysed:
f

### (9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
f(gen_a:b:s:c3_0(+(1, n5_0)), gen_a:b:s:c3_0(0)) → *4_0, rt ∈ Ω(n50)

Induction Base:
f(gen_a:b:s:c3_0(+(1, 0)), gen_a:b:s:c3_0(0))

Induction Step:
f(gen_a:b:s:c3_0(+(1, +(n5_0, 1))), gen_a:b:s:c3_0(0)) →RΩ(1)
f(gen_a:b:s:c3_0(+(1, n5_0)), c) →IH
*4_0

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (11) Obligation:

TRS:
Rules:
f(a, a) → f(a, b)
f(a, b) → f(s(a), c)
f(s(X), c) → f(X, c)
f(c, c) → f(a, a)

Types:
f :: a:b:s:c → a:b:s:c → f
a :: a:b:s:c
b :: a:b:s:c
s :: a:b:s:c → a:b:s:c
c :: a:b:s:c
hole_f1_0 :: f
hole_a:b:s:c2_0 :: a:b:s:c
gen_a:b:s:c3_0 :: Nat → a:b:s:c

Lemmas:
f(gen_a:b:s:c3_0(+(1, n5_0)), gen_a:b:s:c3_0(0)) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_a:b:s:c3_0(0) ⇔ c
gen_a:b:s:c3_0(+(x, 1)) ⇔ s(gen_a:b:s:c3_0(x))

No more defined symbols left to analyse.

### (12) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
f(gen_a:b:s:c3_0(+(1, n5_0)), gen_a:b:s:c3_0(0)) → *4_0, rt ∈ Ω(n50)

### (14) Obligation:

TRS:
Rules:
f(a, a) → f(a, b)
f(a, b) → f(s(a), c)
f(s(X), c) → f(X, c)
f(c, c) → f(a, a)

Types:
f :: a:b:s:c → a:b:s:c → f
a :: a:b:s:c
b :: a:b:s:c
s :: a:b:s:c → a:b:s:c
c :: a:b:s:c
hole_f1_0 :: f
hole_a:b:s:c2_0 :: a:b:s:c
gen_a:b:s:c3_0 :: Nat → a:b:s:c

Lemmas:
f(gen_a:b:s:c3_0(+(1, n5_0)), gen_a:b:s:c3_0(0)) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_a:b:s:c3_0(0) ⇔ c
gen_a:b:s:c3_0(+(x, 1)) ⇔ s(gen_a:b:s:c3_0(x))

No more defined symbols left to analyse.

### (15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
f(gen_a:b:s:c3_0(+(1, n5_0)), gen_a:b:s:c3_0(0)) → *4_0, rt ∈ Ω(n50)