0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 14 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 133 ms)
↳6 CdtProblem
↳7 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 22 ms)
↳8 CdtProblem
↳9 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳10 BOUNDS(1, 1)
ackin(s(X), s(Y)) → u21(ackin(s(X), Y), X)
u21(ackout(X), Y) → u22(ackin(Y, X))
The duplicating contexts are:
ackin(s([]), s(Y))
The defined contexts are:
u21([], x1)
ackin(x0, [])
ackin(s(x0), [])
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
ackin(s(X), s(Y)) → u21(ackin(s(X), Y), X)
u21(ackout(X), Y) → u22(ackin(Y, X))
Tuples:
ackin(s(z0), s(z1)) → u21(ackin(s(z0), z1), z0)
u21(ackout(z0), z1) → u22(ackin(z1, z0))
S tuples:
ACKIN(s(z0), s(z1)) → c(U21(ackin(s(z0), z1), z0), ACKIN(s(z0), z1))
U21(ackout(z0), z1) → c1(ACKIN(z1, z0))
K tuples:none
ACKIN(s(z0), s(z1)) → c(U21(ackin(s(z0), z1), z0), ACKIN(s(z0), z1))
U21(ackout(z0), z1) → c1(ACKIN(z1, z0))
ackin, u21
ACKIN, U21
c, c1
We considered the (Usable) Rules:
U21(ackout(z0), z1) → c1(ACKIN(z1, z0))
And the Tuples:
u21(ackout(z0), z1) → u22(ackin(z1, z0))
ackin(s(z0), s(z1)) → u21(ackin(s(z0), z1), z0)
The order we found is given by the following interpretation:
ACKIN(s(z0), s(z1)) → c(U21(ackin(s(z0), z1), z0), ACKIN(s(z0), z1))
U21(ackout(z0), z1) → c1(ACKIN(z1, z0))
POL(ACKIN(x1, x2)) = 0
POL(U21(x1, x2)) = x1
POL(ackin(x1, x2)) = 0
POL(ackout(x1)) = [1]
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(s(x1)) = 0
POL(u21(x1, x2)) = 0
POL(u22(x1)) = 0
Tuples:
ackin(s(z0), s(z1)) → u21(ackin(s(z0), z1), z0)
u21(ackout(z0), z1) → u22(ackin(z1, z0))
S tuples:
ACKIN(s(z0), s(z1)) → c(U21(ackin(s(z0), z1), z0), ACKIN(s(z0), z1))
U21(ackout(z0), z1) → c1(ACKIN(z1, z0))
K tuples:
ACKIN(s(z0), s(z1)) → c(U21(ackin(s(z0), z1), z0), ACKIN(s(z0), z1))
Defined Rule Symbols:
U21(ackout(z0), z1) → c1(ACKIN(z1, z0))
ackin, u21
ACKIN, U21
c, c1
We considered the (Usable) Rules:
ACKIN(s(z0), s(z1)) → c(U21(ackin(s(z0), z1), z0), ACKIN(s(z0), z1))
And the Tuples:
u21(ackout(z0), z1) → u22(ackin(z1, z0))
ackin(s(z0), s(z1)) → u21(ackin(s(z0), z1), z0)
The order we found is given by the following interpretation:
ACKIN(s(z0), s(z1)) → c(U21(ackin(s(z0), z1), z0), ACKIN(s(z0), z1))
U21(ackout(z0), z1) → c1(ACKIN(z1, z0))
POL(ACKIN(x1, x2)) = x2
POL(U21(x1, x2)) = x1
POL(ackin(x1, x2)) = 0
POL(ackout(x1)) = [1] + x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(s(x1)) = [1] + x1
POL(u21(x1, x2)) = x1
POL(u22(x1)) = 0
Tuples:
ackin(s(z0), s(z1)) → u21(ackin(s(z0), z1), z0)
u21(ackout(z0), z1) → u22(ackin(z1, z0))
S tuples:none
ACKIN(s(z0), s(z1)) → c(U21(ackin(s(z0), z1), z0), ACKIN(s(z0), z1))
U21(ackout(z0), z1) → c1(ACKIN(z1, z0))
Defined Rule Symbols:
U21(ackout(z0), z1) → c1(ACKIN(z1, z0))
ACKIN(s(z0), s(z1)) → c(U21(ackin(s(z0), z1), z0), ACKIN(s(z0), z1))
ackin, u21
ACKIN, U21
c, c1