0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 15 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtUsableRulesProof (⇔, 0 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 91 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 19 ms)
↳12 CdtProblem
↳13 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 0 ms)
↳14 CdtProblem
↳15 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 BOUNDS(1, 1)
dx(X) → one
dx(a) → zero
dx(plus(ALPHA, BETA)) → plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) → plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) → minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) → neg(dx(ALPHA))
dx(div(ALPHA, BETA)) → minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) → div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) → plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))
As the TRS does not nest defined symbols, we have rc = irc.
dx(X) → one
dx(a) → zero
dx(plus(ALPHA, BETA)) → plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) → plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) → minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) → neg(dx(ALPHA))
dx(div(ALPHA, BETA)) → minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) → div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) → plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))
Tuples:
dx(z0) → one
dx(a) → zero
dx(plus(z0, z1)) → plus(dx(z0), dx(z1))
dx(times(z0, z1)) → plus(times(z1, dx(z0)), times(z0, dx(z1)))
dx(minus(z0, z1)) → minus(dx(z0), dx(z1))
dx(neg(z0)) → neg(dx(z0))
dx(div(z0, z1)) → minus(div(dx(z0), z1), times(z0, div(dx(z1), exp(z1, two))))
dx(ln(z0)) → div(dx(z0), z0)
dx(exp(z0, z1)) → plus(times(z1, times(exp(z0, minus(z1, one)), dx(z0))), times(exp(z0, z1), times(ln(z0), dx(z1))))
S tuples:
DX(z0) → c
DX(a) → c1
DX(plus(z0, z1)) → c2(DX(z0), DX(z1))
DX(times(z0, z1)) → c3(DX(z0), DX(z1))
DX(minus(z0, z1)) → c4(DX(z0), DX(z1))
DX(neg(z0)) → c5(DX(z0))
DX(div(z0, z1)) → c6(DX(z0), DX(z1))
DX(ln(z0)) → c7(DX(z0))
DX(exp(z0, z1)) → c8(DX(z0), DX(z1))
K tuples:none
DX(z0) → c
DX(a) → c1
DX(plus(z0, z1)) → c2(DX(z0), DX(z1))
DX(times(z0, z1)) → c3(DX(z0), DX(z1))
DX(minus(z0, z1)) → c4(DX(z0), DX(z1))
DX(neg(z0)) → c5(DX(z0))
DX(div(z0, z1)) → c6(DX(z0), DX(z1))
DX(ln(z0)) → c7(DX(z0))
DX(exp(z0, z1)) → c8(DX(z0), DX(z1))
dx
DX
c, c1, c2, c3, c4, c5, c6, c7, c8
DX(a) → c1
DX(z0) → c
Tuples:
dx(z0) → one
dx(a) → zero
dx(plus(z0, z1)) → plus(dx(z0), dx(z1))
dx(times(z0, z1)) → plus(times(z1, dx(z0)), times(z0, dx(z1)))
dx(minus(z0, z1)) → minus(dx(z0), dx(z1))
dx(neg(z0)) → neg(dx(z0))
dx(div(z0, z1)) → minus(div(dx(z0), z1), times(z0, div(dx(z1), exp(z1, two))))
dx(ln(z0)) → div(dx(z0), z0)
dx(exp(z0, z1)) → plus(times(z1, times(exp(z0, minus(z1, one)), dx(z0))), times(exp(z0, z1), times(ln(z0), dx(z1))))
S tuples:
DX(plus(z0, z1)) → c2(DX(z0), DX(z1))
DX(times(z0, z1)) → c3(DX(z0), DX(z1))
DX(minus(z0, z1)) → c4(DX(z0), DX(z1))
DX(neg(z0)) → c5(DX(z0))
DX(div(z0, z1)) → c6(DX(z0), DX(z1))
DX(ln(z0)) → c7(DX(z0))
DX(exp(z0, z1)) → c8(DX(z0), DX(z1))
K tuples:none
DX(plus(z0, z1)) → c2(DX(z0), DX(z1))
DX(times(z0, z1)) → c3(DX(z0), DX(z1))
DX(minus(z0, z1)) → c4(DX(z0), DX(z1))
DX(neg(z0)) → c5(DX(z0))
DX(div(z0, z1)) → c6(DX(z0), DX(z1))
DX(ln(z0)) → c7(DX(z0))
DX(exp(z0, z1)) → c8(DX(z0), DX(z1))
dx
DX
c2, c3, c4, c5, c6, c7, c8
dx(z0) → one
dx(a) → zero
dx(plus(z0, z1)) → plus(dx(z0), dx(z1))
dx(times(z0, z1)) → plus(times(z1, dx(z0)), times(z0, dx(z1)))
dx(minus(z0, z1)) → minus(dx(z0), dx(z1))
dx(neg(z0)) → neg(dx(z0))
dx(div(z0, z1)) → minus(div(dx(z0), z1), times(z0, div(dx(z1), exp(z1, two))))
dx(ln(z0)) → div(dx(z0), z0)
dx(exp(z0, z1)) → plus(times(z1, times(exp(z0, minus(z1, one)), dx(z0))), times(exp(z0, z1), times(ln(z0), dx(z1))))
S tuples:
DX(plus(z0, z1)) → c2(DX(z0), DX(z1))
DX(times(z0, z1)) → c3(DX(z0), DX(z1))
DX(minus(z0, z1)) → c4(DX(z0), DX(z1))
DX(neg(z0)) → c5(DX(z0))
DX(div(z0, z1)) → c6(DX(z0), DX(z1))
DX(ln(z0)) → c7(DX(z0))
DX(exp(z0, z1)) → c8(DX(z0), DX(z1))
K tuples:none
DX(plus(z0, z1)) → c2(DX(z0), DX(z1))
DX(times(z0, z1)) → c3(DX(z0), DX(z1))
DX(minus(z0, z1)) → c4(DX(z0), DX(z1))
DX(neg(z0)) → c5(DX(z0))
DX(div(z0, z1)) → c6(DX(z0), DX(z1))
DX(ln(z0)) → c7(DX(z0))
DX(exp(z0, z1)) → c8(DX(z0), DX(z1))
DX
c2, c3, c4, c5, c6, c7, c8
We considered the (Usable) Rules:none
DX(times(z0, z1)) → c3(DX(z0), DX(z1))
DX(neg(z0)) → c5(DX(z0))
DX(exp(z0, z1)) → c8(DX(z0), DX(z1))
The order we found is given by the following interpretation:
DX(plus(z0, z1)) → c2(DX(z0), DX(z1))
DX(times(z0, z1)) → c3(DX(z0), DX(z1))
DX(minus(z0, z1)) → c4(DX(z0), DX(z1))
DX(neg(z0)) → c5(DX(z0))
DX(div(z0, z1)) → c6(DX(z0), DX(z1))
DX(ln(z0)) → c7(DX(z0))
DX(exp(z0, z1)) → c8(DX(z0), DX(z1))
POL(DX(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(div(x1, x2)) = x1 + x2
POL(exp(x1, x2)) = [1] + x1 + x2
POL(ln(x1)) = x1
POL(minus(x1, x2)) = x1 + x2
POL(neg(x1)) = [1] + x1
POL(plus(x1, x2)) = x1 + x2
POL(times(x1, x2)) = [1] + x1 + x2
S tuples:
DX(plus(z0, z1)) → c2(DX(z0), DX(z1))
DX(times(z0, z1)) → c3(DX(z0), DX(z1))
DX(minus(z0, z1)) → c4(DX(z0), DX(z1))
DX(neg(z0)) → c5(DX(z0))
DX(div(z0, z1)) → c6(DX(z0), DX(z1))
DX(ln(z0)) → c7(DX(z0))
DX(exp(z0, z1)) → c8(DX(z0), DX(z1))
K tuples:
DX(plus(z0, z1)) → c2(DX(z0), DX(z1))
DX(minus(z0, z1)) → c4(DX(z0), DX(z1))
DX(div(z0, z1)) → c6(DX(z0), DX(z1))
DX(ln(z0)) → c7(DX(z0))
Defined Rule Symbols:none
DX(times(z0, z1)) → c3(DX(z0), DX(z1))
DX(neg(z0)) → c5(DX(z0))
DX(exp(z0, z1)) → c8(DX(z0), DX(z1))
DX
c2, c3, c4, c5, c6, c7, c8
We considered the (Usable) Rules:none
DX(minus(z0, z1)) → c4(DX(z0), DX(z1))
DX(ln(z0)) → c7(DX(z0))
The order we found is given by the following interpretation:
DX(plus(z0, z1)) → c2(DX(z0), DX(z1))
DX(times(z0, z1)) → c3(DX(z0), DX(z1))
DX(minus(z0, z1)) → c4(DX(z0), DX(z1))
DX(neg(z0)) → c5(DX(z0))
DX(div(z0, z1)) → c6(DX(z0), DX(z1))
DX(ln(z0)) → c7(DX(z0))
DX(exp(z0, z1)) → c8(DX(z0), DX(z1))
POL(DX(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(div(x1, x2)) = x1 + x2
POL(exp(x1, x2)) = x1 + x2
POL(ln(x1)) = [1] + x1
POL(minus(x1, x2)) = [1] + x1 + x2
POL(neg(x1)) = x1
POL(plus(x1, x2)) = x1 + x2
POL(times(x1, x2)) = x1 + x2
S tuples:
DX(plus(z0, z1)) → c2(DX(z0), DX(z1))
DX(times(z0, z1)) → c3(DX(z0), DX(z1))
DX(minus(z0, z1)) → c4(DX(z0), DX(z1))
DX(neg(z0)) → c5(DX(z0))
DX(div(z0, z1)) → c6(DX(z0), DX(z1))
DX(ln(z0)) → c7(DX(z0))
DX(exp(z0, z1)) → c8(DX(z0), DX(z1))
K tuples:
DX(plus(z0, z1)) → c2(DX(z0), DX(z1))
DX(div(z0, z1)) → c6(DX(z0), DX(z1))
Defined Rule Symbols:none
DX(times(z0, z1)) → c3(DX(z0), DX(z1))
DX(neg(z0)) → c5(DX(z0))
DX(exp(z0, z1)) → c8(DX(z0), DX(z1))
DX(minus(z0, z1)) → c4(DX(z0), DX(z1))
DX(ln(z0)) → c7(DX(z0))
DX
c2, c3, c4, c5, c6, c7, c8
We considered the (Usable) Rules:none
DX(plus(z0, z1)) → c2(DX(z0), DX(z1))
DX(div(z0, z1)) → c6(DX(z0), DX(z1))
The order we found is given by the following interpretation:
DX(plus(z0, z1)) → c2(DX(z0), DX(z1))
DX(times(z0, z1)) → c3(DX(z0), DX(z1))
DX(minus(z0, z1)) → c4(DX(z0), DX(z1))
DX(neg(z0)) → c5(DX(z0))
DX(div(z0, z1)) → c6(DX(z0), DX(z1))
DX(ln(z0)) → c7(DX(z0))
DX(exp(z0, z1)) → c8(DX(z0), DX(z1))
POL(DX(x1)) = [2]x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(div(x1, x2)) = [1] + x1 + x2
POL(exp(x1, x2)) = x1 + x2
POL(ln(x1)) = x1
POL(minus(x1, x2)) = [3] + x1 + x2
POL(neg(x1)) = x1
POL(plus(x1, x2)) = [1] + x1 + x2
POL(times(x1, x2)) = x1 + x2
S tuples:none
DX(plus(z0, z1)) → c2(DX(z0), DX(z1))
DX(times(z0, z1)) → c3(DX(z0), DX(z1))
DX(minus(z0, z1)) → c4(DX(z0), DX(z1))
DX(neg(z0)) → c5(DX(z0))
DX(div(z0, z1)) → c6(DX(z0), DX(z1))
DX(ln(z0)) → c7(DX(z0))
DX(exp(z0, z1)) → c8(DX(z0), DX(z1))
Defined Rule Symbols:none
DX(times(z0, z1)) → c3(DX(z0), DX(z1))
DX(neg(z0)) → c5(DX(z0))
DX(exp(z0, z1)) → c8(DX(z0), DX(z1))
DX(minus(z0, z1)) → c4(DX(z0), DX(z1))
DX(ln(z0)) → c7(DX(z0))
DX(plus(z0, z1)) → c2(DX(z0), DX(z1))
DX(div(z0, z1)) → c6(DX(z0), DX(z1))
DX
c2, c3, c4, c5, c6, c7, c8