### (0) Obligation:

The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, 1).

The TRS R consists of the following rules:

f(s(X), Y) → h(s(f(h(Y), X)))

Rewrite Strategy: FULL

### (1) RcToIrcProof (BOTH BOUNDS(ID, ID) transformation)

Converted rc-obligation to irc-obligation.

As the TRS does not nest defined symbols, we have rc = irc.

### (2) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, 1).

The TRS R consists of the following rules:

f(s(X), Y) → h(s(f(h(Y), X)))

Rewrite Strategy: INNERMOST

### (3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

### (4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(s(z0), z1) → h(s(f(h(z1), z0)))
Tuples:

F(s(z0), z1) → c(F(h(z1), z0))
S tuples:

F(s(z0), z1) → c(F(h(z1), z0))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

### (5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

F(s(z0), z1) → c(F(h(z1), z0))

### (6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(s(z0), z1) → h(s(f(h(z1), z0)))
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:none

Compound Symbols:none

### (7) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty