0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 16 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtUsableRulesProof (⇔, 0 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 134 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 237 ms)
↳12 CdtProblem
↳13 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 230 ms)
↳14 CdtProblem
↳15 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 BOUNDS(1, 1)
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))
The duplicating contexts are:
quot(s(X), s([]))
The defined contexts are:
log(s([]))
quot([], s(x1))
min([], x1)
quot([], s(s(0)))
[] just represents basic- or constructor-terms in the following defined contexts:
quot([], s(x1))
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))
Tuples:
min(z0, 0) → z0
min(s(z0), s(z1)) → min(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(min(z0, z1), s(z1)))
log(s(0)) → 0
log(s(s(z0))) → s(log(s(quot(z0, s(s(0))))))
S tuples:
MIN(z0, 0) → c
MIN(s(z0), s(z1)) → c1(MIN(z0, z1))
QUOT(0, s(z0)) → c2
QUOT(s(z0), s(z1)) → c3(QUOT(min(z0, z1), s(z1)), MIN(z0, z1))
LOG(s(0)) → c4
LOG(s(s(z0))) → c5(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
K tuples:none
MIN(z0, 0) → c
MIN(s(z0), s(z1)) → c1(MIN(z0, z1))
QUOT(0, s(z0)) → c2
QUOT(s(z0), s(z1)) → c3(QUOT(min(z0, z1), s(z1)), MIN(z0, z1))
LOG(s(0)) → c4
LOG(s(s(z0))) → c5(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
min, quot, log
MIN, QUOT, LOG
c, c1, c2, c3, c4, c5
MIN(z0, 0) → c
LOG(s(0)) → c4
QUOT(0, s(z0)) → c2
Tuples:
min(z0, 0) → z0
min(s(z0), s(z1)) → min(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(min(z0, z1), s(z1)))
log(s(0)) → 0
log(s(s(z0))) → s(log(s(quot(z0, s(s(0))))))
S tuples:
MIN(s(z0), s(z1)) → c1(MIN(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(min(z0, z1), s(z1)), MIN(z0, z1))
LOG(s(s(z0))) → c5(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
K tuples:none
MIN(s(z0), s(z1)) → c1(MIN(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(min(z0, z1), s(z1)), MIN(z0, z1))
LOG(s(s(z0))) → c5(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
min, quot, log
MIN, QUOT, LOG
c1, c3, c5
log(s(0)) → 0
log(s(s(z0))) → s(log(s(quot(z0, s(s(0))))))
Tuples:
min(z0, 0) → z0
min(s(z0), s(z1)) → min(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(min(z0, z1), s(z1)))
S tuples:
MIN(s(z0), s(z1)) → c1(MIN(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(min(z0, z1), s(z1)), MIN(z0, z1))
LOG(s(s(z0))) → c5(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
K tuples:none
MIN(s(z0), s(z1)) → c1(MIN(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(min(z0, z1), s(z1)), MIN(z0, z1))
LOG(s(s(z0))) → c5(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
min, quot
MIN, QUOT, LOG
c1, c3, c5
We considered the (Usable) Rules:
LOG(s(s(z0))) → c5(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
And the Tuples:
min(z0, 0) → z0
min(s(z0), s(z1)) → min(z0, z1)
quot(s(z0), s(z1)) → s(quot(min(z0, z1), s(z1)))
quot(0, s(z0)) → 0
The order we found is given by the following interpretation:
MIN(s(z0), s(z1)) → c1(MIN(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(min(z0, z1), s(z1)), MIN(z0, z1))
LOG(s(s(z0))) → c5(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
POL(0) = 0
POL(LOG(x1)) = x1
POL(MIN(x1, x2)) = 0
POL(QUOT(x1, x2)) = 0
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(min(x1, x2)) = x1
POL(quot(x1, x2)) = x1
POL(s(x1)) = [1] + x1
Tuples:
min(z0, 0) → z0
min(s(z0), s(z1)) → min(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(min(z0, z1), s(z1)))
S tuples:
MIN(s(z0), s(z1)) → c1(MIN(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(min(z0, z1), s(z1)), MIN(z0, z1))
LOG(s(s(z0))) → c5(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
K tuples:
MIN(s(z0), s(z1)) → c1(MIN(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(min(z0, z1), s(z1)), MIN(z0, z1))
Defined Rule Symbols:
LOG(s(s(z0))) → c5(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
min, quot
MIN, QUOT, LOG
c1, c3, c5
We considered the (Usable) Rules:
QUOT(s(z0), s(z1)) → c3(QUOT(min(z0, z1), s(z1)), MIN(z0, z1))
And the Tuples:
min(z0, 0) → z0
min(s(z0), s(z1)) → min(z0, z1)
quot(s(z0), s(z1)) → s(quot(min(z0, z1), s(z1)))
quot(0, s(z0)) → 0
The order we found is given by the following interpretation:
MIN(s(z0), s(z1)) → c1(MIN(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(min(z0, z1), s(z1)), MIN(z0, z1))
LOG(s(s(z0))) → c5(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
POL(0) = 0
POL(LOG(x1)) = [2]x1 + x12
POL(MIN(x1, x2)) = 0
POL(QUOT(x1, x2)) = [2]x1 + x22
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(min(x1, x2)) = x1
POL(quot(x1, x2)) = x1
POL(s(x1)) = [2] + x1
Tuples:
min(z0, 0) → z0
min(s(z0), s(z1)) → min(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(min(z0, z1), s(z1)))
S tuples:
MIN(s(z0), s(z1)) → c1(MIN(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(min(z0, z1), s(z1)), MIN(z0, z1))
LOG(s(s(z0))) → c5(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
K tuples:
MIN(s(z0), s(z1)) → c1(MIN(z0, z1))
Defined Rule Symbols:
LOG(s(s(z0))) → c5(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
QUOT(s(z0), s(z1)) → c3(QUOT(min(z0, z1), s(z1)), MIN(z0, z1))
min, quot
MIN, QUOT, LOG
c1, c3, c5
We considered the (Usable) Rules:
MIN(s(z0), s(z1)) → c1(MIN(z0, z1))
And the Tuples:
min(z0, 0) → z0
min(s(z0), s(z1)) → min(z0, z1)
quot(s(z0), s(z1)) → s(quot(min(z0, z1), s(z1)))
quot(0, s(z0)) → 0
The order we found is given by the following interpretation:
MIN(s(z0), s(z1)) → c1(MIN(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(min(z0, z1), s(z1)), MIN(z0, z1))
LOG(s(s(z0))) → c5(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
POL(0) = 0
POL(LOG(x1)) = [2]x12
POL(MIN(x1, x2)) = [1] + x2
POL(QUOT(x1, x2)) = [2]x2 + [2]x1·x2
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(min(x1, x2)) = x1
POL(quot(x1, x2)) = x1
POL(s(x1)) = [1] + x1
Tuples:
min(z0, 0) → z0
min(s(z0), s(z1)) → min(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(min(z0, z1), s(z1)))
S tuples:none
MIN(s(z0), s(z1)) → c1(MIN(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(min(z0, z1), s(z1)), MIN(z0, z1))
LOG(s(s(z0))) → c5(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
Defined Rule Symbols:
LOG(s(s(z0))) → c5(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
QUOT(s(z0), s(z1)) → c3(QUOT(min(z0, z1), s(z1)), MIN(z0, z1))
MIN(s(z0), s(z1)) → c1(MIN(z0, z1))
min, quot
MIN, QUOT, LOG
c1, c3, c5