0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 18 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 0 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 90 ms)
↳12 CdtProblem
↳13 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 56 ms)
↳14 CdtProblem
↳15 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 BOUNDS(1, 1)
minus(X, 0) → X
minus(s(X), s(Y)) → p(minus(X, Y))
p(s(X)) → X
div(0, s(Y)) → 0
div(s(X), s(Y)) → s(div(minus(X, Y), s(Y)))
The duplicating contexts are:
div(s(X), s([]))
The defined contexts are:
p([])
div([], s(x1))
minus([], x1)
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
minus(X, 0) → X
minus(s(X), s(Y)) → p(minus(X, Y))
p(s(X)) → X
div(0, s(Y)) → 0
div(s(X), s(Y)) → s(div(minus(X, Y), s(Y)))
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → p(minus(z0, z1))
p(s(z0)) → z0
div(0, s(z0)) → 0
div(s(z0), s(z1)) → s(div(minus(z0, z1), s(z1)))
S tuples:
MINUS(z0, 0) → c
MINUS(s(z0), s(z1)) → c1(P(minus(z0, z1)), MINUS(z0, z1))
P(s(z0)) → c2
DIV(0, s(z0)) → c3
DIV(s(z0), s(z1)) → c4(DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:none
MINUS(z0, 0) → c
MINUS(s(z0), s(z1)) → c1(P(minus(z0, z1)), MINUS(z0, z1))
P(s(z0)) → c2
DIV(0, s(z0)) → c3
DIV(s(z0), s(z1)) → c4(DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
minus, p, div
MINUS, P, DIV
c, c1, c2, c3, c4
MINUS(z0, 0) → c
DIV(0, s(z0)) → c3
P(s(z0)) → c2
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → p(minus(z0, z1))
p(s(z0)) → z0
div(0, s(z0)) → 0
div(s(z0), s(z1)) → s(div(minus(z0, z1), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c1(P(minus(z0, z1)), MINUS(z0, z1))
DIV(s(z0), s(z1)) → c4(DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:none
MINUS(s(z0), s(z1)) → c1(P(minus(z0, z1)), MINUS(z0, z1))
DIV(s(z0), s(z1)) → c4(DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
minus, p, div
MINUS, DIV
c1, c4
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → p(minus(z0, z1))
p(s(z0)) → z0
div(0, s(z0)) → 0
div(s(z0), s(z1)) → s(div(minus(z0, z1), s(z1)))
S tuples:
DIV(s(z0), s(z1)) → c4(DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
K tuples:none
DIV(s(z0), s(z1)) → c4(DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
minus, p, div
DIV, MINUS
c4, c1
div(0, s(z0)) → 0
div(s(z0), s(z1)) → s(div(minus(z0, z1), s(z1)))
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → p(minus(z0, z1))
p(s(z0)) → z0
S tuples:
DIV(s(z0), s(z1)) → c4(DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
K tuples:none
DIV(s(z0), s(z1)) → c4(DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
minus, p
DIV, MINUS
c4, c1
We considered the (Usable) Rules:
DIV(s(z0), s(z1)) → c4(DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
And the Tuples:
p(s(z0)) → z0
minus(z0, 0) → z0
minus(s(z0), s(z1)) → p(minus(z0, z1))
The order we found is given by the following interpretation:
DIV(s(z0), s(z1)) → c4(DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
POL(0) = 0
POL(DIV(x1, x2)) = [2]x1
POL(MINUS(x1, x2)) = [1]
POL(c1(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(minus(x1, x2)) = x1
POL(p(x1)) = [1] + x1
POL(s(x1)) = [2] + x1
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → p(minus(z0, z1))
p(s(z0)) → z0
S tuples:
DIV(s(z0), s(z1)) → c4(DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
K tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
Defined Rule Symbols:
DIV(s(z0), s(z1)) → c4(DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
minus, p
DIV, MINUS
c4, c1
We considered the (Usable) Rules:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
And the Tuples:
p(s(z0)) → z0
minus(z0, 0) → z0
minus(s(z0), s(z1)) → p(minus(z0, z1))
The order we found is given by the following interpretation:
DIV(s(z0), s(z1)) → c4(DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
POL(0) = 0
POL(DIV(x1, x2)) = x12
POL(MINUS(x1, x2)) = [2]x1
POL(c1(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(minus(x1, x2)) = x1
POL(p(x1)) = [1] + x1
POL(s(x1)) = [1] + x1
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → p(minus(z0, z1))
p(s(z0)) → z0
S tuples:none
DIV(s(z0), s(z1)) → c4(DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
Defined Rule Symbols:
DIV(s(z0), s(z1)) → c4(DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
minus, p
DIV, MINUS
c4, c1