(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
le(s(X), s(Y)) →+ le(X, Y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [X / s(X), Y / s(Y)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

le(0', Y) → true
le(s(X), 0') → false
le(s(X), s(Y)) → le(X, Y)
minus(0', Y) → 0'
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0'
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
le(0', Y) → true
le(s(X), 0') → false
le(s(X), s(Y)) → le(X, Y)
minus(0', Y) → 0'
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0'
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
ifMinus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
le, minus, quot

They will be analysed ascendingly in the following order:
le < minus
minus < quot

(8) Obligation:

TRS:
Rules:
le(0', Y) → true
le(s(X), 0') → false
le(s(X), s(Y)) → le(X, Y)
minus(0', Y) → 0'
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0'
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
ifMinus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
le, minus, quot

They will be analysed ascendingly in the following order:
le < minus
minus < quot

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Induction Base:
le(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
true

Induction Step:
le(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
le(0', Y) → true
le(s(X), 0') → false
le(s(X), s(Y)) → le(X, Y)
minus(0', Y) → 0'
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0'
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
ifMinus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
minus, quot

They will be analysed ascendingly in the following order:
minus < quot

(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol minus.

(13) Obligation:

TRS:
Rules:
le(0', Y) → true
le(s(X), 0') → false
le(s(X), s(Y)) → le(X, Y)
minus(0', Y) → 0'
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0'
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
ifMinus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
quot

(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol quot.

(15) Obligation:

TRS:
Rules:
le(0', Y) → true
le(s(X), 0') → false
le(s(X), s(Y)) → le(X, Y)
minus(0', Y) → 0'
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0'
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
ifMinus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(16) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

(17) BOUNDS(n^1, INF)

(18) Obligation:

TRS:
Rules:
le(0', Y) → true
le(s(X), 0') → false
le(s(X), s(Y)) → le(X, Y)
minus(0', Y) → 0'
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0'
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
ifMinus :: true:false → 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(19) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

(20) BOUNDS(n^1, INF)