* Step 1: MI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(0(),y,0(),u) -> true() f(0(),y,s(z),u) -> false() f(s(x),0(),z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) perfectp(0()) -> false() perfectp(s(x)) -> f(x,s(0()),s(x),s(x)) - Signature: {f/4,perfectp/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0} - Obligation: runtime complexity wrt. defined symbols {f,perfectp} and constructors {0,false,if,le,minus,s,true} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(if) = {3} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [9] p(f) = [2] x_1 + [1] p(false) = [0] p(if) = [1] x_3 + [0] p(le) = [1] x_1 + [0] p(minus) = [2] p(perfectp) = [2] x_1 + [12] p(s) = [1] x_1 + [2] p(true) = [1] Following rules are strictly oriented: f(0(),y,0(),u) = [19] > [1] = true() f(0(),y,s(z),u) = [19] > [0] = false() f(s(x),0(),z,u) = [2] x + [5] > [2] x + [1] = f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) = [2] x + [5] > [2] x + [1] = if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) perfectp(0()) = [30] > [0] = false() perfectp(s(x)) = [2] x + [16] > [2] x + [1] = f(x,s(0()),s(x),s(x)) Following rules are (at-least) weakly oriented: * Step 2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: f(0(),y,0(),u) -> true() f(0(),y,s(z),u) -> false() f(s(x),0(),z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) perfectp(0()) -> false() perfectp(s(x)) -> f(x,s(0()),s(x),s(x)) - Signature: {f/4,perfectp/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0} - Obligation: runtime complexity wrt. defined symbols {f,perfectp} and constructors {0,false,if,le,minus,s,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))