0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 12 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (ComplexityIfPolyImplication, 0 ms)
↳6 CdtProblem
↳7 CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 0 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 84 ms)
↳12 CdtProblem
↳13 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 BOUNDS(1, 1)
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
As the TRS does not nest defined symbols, we have rc = irc.
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
Tuples:
perfectp(0) → false
perfectp(s(z0)) → f(z0, s(0), s(z0), s(z0))
f(0, z0, 0, z1) → true
f(0, z0, s(z1), z2) → false
f(s(z0), 0, z1, z2) → f(z0, z2, minus(z1, s(z0)), z2)
f(s(z0), s(z1), z2, z3) → if(le(z0, z1), f(s(z0), minus(z1, z0), z2, z3), f(z0, z3, z2, z3))
S tuples:
PERFECTP(0) → c
PERFECTP(s(z0)) → c1(F(z0, s(0), s(z0), s(z0)))
F(0, z0, 0, z1) → c2
F(0, z0, s(z1), z2) → c3
F(s(z0), 0, z1, z2) → c4(F(z0, z2, minus(z1, s(z0)), z2))
F(s(z0), s(z1), z2, z3) → c5(F(s(z0), minus(z1, z0), z2, z3), F(z0, z3, z2, z3))
K tuples:none
PERFECTP(0) → c
PERFECTP(s(z0)) → c1(F(z0, s(0), s(z0), s(z0)))
F(0, z0, 0, z1) → c2
F(0, z0, s(z1), z2) → c3
F(s(z0), 0, z1, z2) → c4(F(z0, z2, minus(z1, s(z0)), z2))
F(s(z0), s(z1), z2, z3) → c5(F(s(z0), minus(z1, z0), z2, z3), F(z0, z3, z2, z3))
perfectp, f
PERFECTP, F
c, c1, c2, c3, c4, c5
Removed 3 trailing nodes:
PERFECTP(s(z0)) → c1(F(z0, s(0), s(z0), s(z0)))
PERFECTP(0) → c
F(0, z0, s(z1), z2) → c3
F(0, z0, 0, z1) → c2
Tuples:
perfectp(0) → false
perfectp(s(z0)) → f(z0, s(0), s(z0), s(z0))
f(0, z0, 0, z1) → true
f(0, z0, s(z1), z2) → false
f(s(z0), 0, z1, z2) → f(z0, z2, minus(z1, s(z0)), z2)
f(s(z0), s(z1), z2, z3) → if(le(z0, z1), f(s(z0), minus(z1, z0), z2, z3), f(z0, z3, z2, z3))
S tuples:
F(s(z0), 0, z1, z2) → c4(F(z0, z2, minus(z1, s(z0)), z2))
F(s(z0), s(z1), z2, z3) → c5(F(s(z0), minus(z1, z0), z2, z3), F(z0, z3, z2, z3))
K tuples:none
F(s(z0), 0, z1, z2) → c4(F(z0, z2, minus(z1, s(z0)), z2))
F(s(z0), s(z1), z2, z3) → c5(F(s(z0), minus(z1, z0), z2, z3), F(z0, z3, z2, z3))
perfectp, f
F
c4, c5
Tuples:
perfectp(0) → false
perfectp(s(z0)) → f(z0, s(0), s(z0), s(z0))
f(0, z0, 0, z1) → true
f(0, z0, s(z1), z2) → false
f(s(z0), 0, z1, z2) → f(z0, z2, minus(z1, s(z0)), z2)
f(s(z0), s(z1), z2, z3) → if(le(z0, z1), f(s(z0), minus(z1, z0), z2, z3), f(z0, z3, z2, z3))
S tuples:
F(s(z0), 0, z1, z2) → c4(F(z0, z2, minus(z1, s(z0)), z2))
F(s(z0), s(z1), z2, z3) → c5(F(z0, z3, z2, z3))
K tuples:none
F(s(z0), 0, z1, z2) → c4(F(z0, z2, minus(z1, s(z0)), z2))
F(s(z0), s(z1), z2, z3) → c5(F(z0, z3, z2, z3))
perfectp, f
F
c4, c5
perfectp(0) → false
perfectp(s(z0)) → f(z0, s(0), s(z0), s(z0))
f(0, z0, 0, z1) → true
f(0, z0, s(z1), z2) → false
f(s(z0), 0, z1, z2) → f(z0, z2, minus(z1, s(z0)), z2)
f(s(z0), s(z1), z2, z3) → if(le(z0, z1), f(s(z0), minus(z1, z0), z2, z3), f(z0, z3, z2, z3))
S tuples:
F(s(z0), 0, z1, z2) → c4(F(z0, z2, minus(z1, s(z0)), z2))
F(s(z0), s(z1), z2, z3) → c5(F(z0, z3, z2, z3))
K tuples:none
F(s(z0), 0, z1, z2) → c4(F(z0, z2, minus(z1, s(z0)), z2))
F(s(z0), s(z1), z2, z3) → c5(F(z0, z3, z2, z3))
F
c4, c5
We considered the (Usable) Rules:none
F(s(z0), 0, z1, z2) → c4(F(z0, z2, minus(z1, s(z0)), z2))
F(s(z0), s(z1), z2, z3) → c5(F(z0, z3, z2, z3))
The order we found is given by the following interpretation:
F(s(z0), 0, z1, z2) → c4(F(z0, z2, minus(z1, s(z0)), z2))
F(s(z0), s(z1), z2, z3) → c5(F(z0, z3, z2, z3))
POL(0) = 0
POL(F(x1, x2, x3, x4)) = x1 + x3
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(minus(x1, x2)) = 0
POL(s(x1)) = [1] + x1
S tuples:none
F(s(z0), 0, z1, z2) → c4(F(z0, z2, minus(z1, s(z0)), z2))
F(s(z0), s(z1), z2, z3) → c5(F(z0, z3, z2, z3))
Defined Rule Symbols:none
F(s(z0), 0, z1, z2) → c4(F(z0, z2, minus(z1, s(z0)), z2))
F(s(z0), s(z1), z2, z3) → c5(F(z0, z3, z2, z3))
F
c4, c5