* Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(cons(x,k),l) -> g(k,l,cons(x,k)) f(empty(),l) -> l g(a,b,c) -> f(a,cons(b,c)) - Signature: {f/2,g/3} / {cons/2,empty/0} - Obligation: runtime complexity wrt. defined symbols {f,g} and constructors {cons,empty} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak dependency pairs: Strict DPs f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2(l) g#(a,b,c) -> c_3(f#(a,cons(b,c))) Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2(l) g#(a,b,c) -> c_3(f#(a,cons(b,c))) - Strict TRS: f(cons(x,k),l) -> g(k,l,cons(x,k)) f(empty(),l) -> l g(a,b,c) -> f(a,cons(b,c)) - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/1,c_3/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2(l) g#(a,b,c) -> c_3(f#(a,cons(b,c))) * Step 3: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2(l) g#(a,b,c) -> c_3(f#(a,cons(b,c))) - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/1,c_3/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) 2: f#(empty(),l) -> c_2(l) 3: g#(a,b,c) -> c_3(f#(a,cons(b,c))) The strictly oriented rules are moved into the weak component. ** Step 3.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2(l) g#(a,b,c) -> c_3(f#(a,cons(b,c))) - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/1,c_3/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_3) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(cons) = [1] x2 + [8] p(empty) = [6] p(f) = [2] x1 + [1] x2 + [1] p(g) = [4] x2 + [1] x3 + [1] p(f#) = [3] x1 + [0] p(g#) = [3] x1 + [1] p(c_1) = [1] x1 + [15] p(c_2) = [9] p(c_3) = [1] x1 + [0] Following rules are strictly oriented: f#(cons(x,k),l) = [3] k + [24] > [3] k + [16] = c_1(g#(k,l,cons(x,k))) f#(empty(),l) = [18] > [9] = c_2(l) g#(a,b,c) = [3] a + [1] > [3] a + [0] = c_3(f#(a,cons(b,c))) Following rules are (at-least) weakly oriented: ** Step 3.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2(l) g#(a,b,c) -> c_3(f#(a,cons(b,c))) - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/1,c_3/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ** Step 3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2(l) g#(a,b,c) -> c_3(f#(a,cons(b,c))) - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/1,c_3/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) -->_1 g#(a,b,c) -> c_3(f#(a,cons(b,c))):3 2:W:f#(empty(),l) -> c_2(l) -->_1 g#(a,b,c) -> c_3(f#(a,cons(b,c))):3 -->_1 f#(empty(),l) -> c_2(l):2 -->_1 f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))):1 3:W:g#(a,b,c) -> c_3(f#(a,cons(b,c))) -->_1 f#(empty(),l) -> c_2(l):2 -->_1 f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) 3: g#(a,b,c) -> c_3(f#(a,cons(b,c))) 2: f#(empty(),l) -> c_2(l) ** Step 3.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/1,c_3/1} - Obligation: runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))