0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 13 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtUsableRulesProof (⇔, 0 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 69 ms)
↳10 CdtProblem
↳11 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 BOUNDS(1, 1)
f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))
As the TRS does not nest defined symbols, we have rc = irc.
f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))
Tuples:
f(empty, z0) → z0
f(cons(z0, z1), z2) → g(z1, z2, cons(z0, z1))
g(z0, z1, z2) → f(z0, cons(z1, z2))
S tuples:
F(empty, z0) → c
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
K tuples:none
F(empty, z0) → c
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
f, g
F, G
c, c1, c2
F(empty, z0) → c
Tuples:
f(empty, z0) → z0
f(cons(z0, z1), z2) → g(z1, z2, cons(z0, z1))
g(z0, z1, z2) → f(z0, cons(z1, z2))
S tuples:
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
K tuples:none
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
f, g
F, G
c1, c2
f(empty, z0) → z0
f(cons(z0, z1), z2) → g(z1, z2, cons(z0, z1))
g(z0, z1, z2) → f(z0, cons(z1, z2))
S tuples:
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
K tuples:none
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
F, G
c1, c2
We considered the (Usable) Rules:none
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
The order we found is given by the following interpretation:
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
POL(F(x1, x2)) = x12
POL(G(x1, x2, x3)) = [2] + x12
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(cons(x1, x2)) = [2] + x2
S tuples:none
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
Defined Rule Symbols:none
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
F, G
c1, c2