0 CpxTRS
↳1 NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID), 23 ms)
↳2 CpxTRS
↳3 RcToIrcProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTRS
↳5 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 0 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 76 ms)
↳12 CdtProblem
↳13 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 BOUNDS(1, 1)
h(e(x), y) → h(d(x, y), s(y))
d(g(g(0, x), y), s(z)) → g(e(x), d(g(g(0, x), y), z))
d(g(g(0, x), y), 0) → e(y)
d(g(0, x), y) → e(x)
d(g(x, y), z) → g(d(x, z), e(y))
g(e(x), e(y)) → e(g(x, y))
h(e(x), y) → h(d(x, y), s(y))
g(e(x), e(y)) → e(g(x, y))
As the TRS does not nest defined symbols, we have rc = irc.
h(e(x), y) → h(d(x, y), s(y))
g(e(x), e(y)) → e(g(x, y))
Tuples:
h(e(z0), z1) → h(d(z0, z1), s(z1))
g(e(z0), e(z1)) → e(g(z0, z1))
S tuples:
H(e(z0), z1) → c(H(d(z0, z1), s(z1)))
G(e(z0), e(z1)) → c1(G(z0, z1))
K tuples:none
H(e(z0), z1) → c(H(d(z0, z1), s(z1)))
G(e(z0), e(z1)) → c1(G(z0, z1))
h, g
H, G
c, c1
H(e(z0), z1) → c(H(d(z0, z1), s(z1)))
Tuples:
h(e(z0), z1) → h(d(z0, z1), s(z1))
g(e(z0), e(z1)) → e(g(z0, z1))
S tuples:
G(e(z0), e(z1)) → c1(G(z0, z1))
K tuples:none
G(e(z0), e(z1)) → c1(G(z0, z1))
h, g
G
c1
h(e(z0), z1) → h(d(z0, z1), s(z1))
g(e(z0), e(z1)) → e(g(z0, z1))
S tuples:
G(e(z0), e(z1)) → c1(G(z0, z1))
K tuples:none
G(e(z0), e(z1)) → c1(G(z0, z1))
G
c1
We considered the (Usable) Rules:none
G(e(z0), e(z1)) → c1(G(z0, z1))
The order we found is given by the following interpretation:
G(e(z0), e(z1)) → c1(G(z0, z1))
POL(G(x1, x2)) = [2]x22
POL(c1(x1)) = x1
POL(e(x1)) = [1] + x1
S tuples:none
G(e(z0), e(z1)) → c1(G(z0, z1))
Defined Rule Symbols:none
G(e(z0), e(z1)) → c1(G(z0, z1))
G
c1