0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 12 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 3 ms)
↳10 CdtProblem
↳11 CdtNarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CdtProblem
↳13 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 7 ms)
↳14 CdtProblem
↳15 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 12 ms)
↳16 CdtProblem
↳17 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳18 BOUNDS(1, 1)
leq(0, y) → true
leq(s(x), 0) → false
leq(s(x), s(y)) → leq(x, y)
if(true, x, y) → x
if(false, x, y) → y
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
The duplicating contexts are:
mod(s(x), s([]))
mod(s([]), s(y))
The defined contexts are:
if([], x1, s(x2))
if(x0, [], s(x2))
mod([], s(x1))
leq(x0, [])
-(s([]), s(x1))
if(x0, x1, s([]))
-([], x1)
[] just represents basic- or constructor-terms in the following defined contexts:
if([], x1, s(x2))
mod([], s(x1))
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
leq(0, y) → true
leq(s(x), 0) → false
leq(s(x), s(y)) → leq(x, y)
if(true, x, y) → x
if(false, x, y) → y
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
Tuples:
leq(0, z0) → true
leq(s(z0), 0) → false
leq(s(z0), s(z1)) → leq(z0, z1)
if(true, z0, z1) → z0
if(false, z0, z1) → z1
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0))
S tuples:
LEQ(0, z0) → c
LEQ(s(z0), 0) → c1
LEQ(s(z0), s(z1)) → c2(LEQ(z0, z1))
IF(true, z0, z1) → c3
IF(false, z0, z1) → c4
-'(z0, 0) → c5
-'(s(z0), s(z1)) → c6(-'(z0, z1))
MOD(0, z0) → c7
MOD(s(z0), 0) → c8
MOD(s(z0), s(z1)) → c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1)))
K tuples:none
LEQ(0, z0) → c
LEQ(s(z0), 0) → c1
LEQ(s(z0), s(z1)) → c2(LEQ(z0, z1))
IF(true, z0, z1) → c3
IF(false, z0, z1) → c4
-'(z0, 0) → c5
-'(s(z0), s(z1)) → c6(-'(z0, z1))
MOD(0, z0) → c7
MOD(s(z0), 0) → c8
MOD(s(z0), s(z1)) → c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1)))
leq, if, -, mod
LEQ, IF, -', MOD
c, c1, c2, c3, c4, c5, c6, c7, c8, c9
MOD(s(z0), 0) → c8
IF(true, z0, z1) → c3
-'(z0, 0) → c5
MOD(0, z0) → c7
IF(false, z0, z1) → c4
LEQ(s(z0), 0) → c1
LEQ(0, z0) → c
Tuples:
leq(0, z0) → true
leq(s(z0), 0) → false
leq(s(z0), s(z1)) → leq(z0, z1)
if(true, z0, z1) → z0
if(false, z0, z1) → z1
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0))
S tuples:
LEQ(s(z0), s(z1)) → c2(LEQ(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
MOD(s(z0), s(z1)) → c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1)))
K tuples:none
LEQ(s(z0), s(z1)) → c2(LEQ(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
MOD(s(z0), s(z1)) → c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1)))
leq, if, -, mod
LEQ, -', MOD
c2, c6, c9
Tuples:
leq(0, z0) → true
leq(s(z0), 0) → false
leq(s(z0), s(z1)) → leq(z0, z1)
if(true, z0, z1) → z0
if(false, z0, z1) → z1
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0))
S tuples:
LEQ(s(z0), s(z1)) → c2(LEQ(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
MOD(s(z0), s(z1)) → c9(LEQ(z1, z0), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1)))
K tuples:none
LEQ(s(z0), s(z1)) → c2(LEQ(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
MOD(s(z0), s(z1)) → c9(LEQ(z1, z0), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1)))
leq, if, -, mod
LEQ, -', MOD
c2, c6, c9
leq(0, z0) → true
leq(s(z0), 0) → false
leq(s(z0), s(z1)) → leq(z0, z1)
if(true, z0, z1) → z0
if(false, z0, z1) → z1
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0))
Tuples:
-(s(z0), s(z1)) → -(z0, z1)
-(z0, 0) → z0
S tuples:
LEQ(s(z0), s(z1)) → c2(LEQ(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
MOD(s(z0), s(z1)) → c9(LEQ(z1, z0), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1)))
K tuples:none
LEQ(s(z0), s(z1)) → c2(LEQ(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
MOD(s(z0), s(z1)) → c9(LEQ(z1, z0), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1)))
-
LEQ, -', MOD
c2, c6, c9
MOD(s(z0), s(z1)) → c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1)))
Tuples:
-(s(z0), s(z1)) → -(z0, z1)
-(z0, 0) → z0
S tuples:
LEQ(s(z0), s(z1)) → c2(LEQ(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
MOD(s(z0), s(z1)) → c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1)))
K tuples:none
LEQ(s(z0), s(z1)) → c2(LEQ(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
MOD(s(z0), s(z1)) → c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1)))
-
LEQ, -', MOD
c2, c6, c9
We considered the (Usable) Rules:
MOD(s(z0), s(z1)) → c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1)))
And the Tuples:
-(s(z0), s(z1)) → -(z0, z1)
-(z0, 0) → z0
The order we found is given by the following interpretation:
LEQ(s(z0), s(z1)) → c2(LEQ(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
MOD(s(z0), s(z1)) → c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1)))
POL(-(x1, x2)) = x1
POL(-'(x1, x2)) = 0
POL(0) = 0
POL(LEQ(x1, x2)) = 0
POL(MOD(x1, x2)) = x1
POL(c2(x1)) = x1
POL(c6(x1)) = x1
POL(c9(x1, x2, x3)) = x1 + x2 + x3
POL(s(x1)) = [1] + x1
Tuples:
-(s(z0), s(z1)) → -(z0, z1)
-(z0, 0) → z0
S tuples:
LEQ(s(z0), s(z1)) → c2(LEQ(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
MOD(s(z0), s(z1)) → c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1)))
K tuples:
LEQ(s(z0), s(z1)) → c2(LEQ(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
Defined Rule Symbols:
MOD(s(z0), s(z1)) → c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1)))
-
LEQ, -', MOD
c2, c6, c9
We considered the (Usable) Rules:
LEQ(s(z0), s(z1)) → c2(LEQ(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
And the Tuples:
-(s(z0), s(z1)) → -(z0, z1)
-(z0, 0) → z0
The order we found is given by the following interpretation:
LEQ(s(z0), s(z1)) → c2(LEQ(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
MOD(s(z0), s(z1)) → c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1)))
POL(-(x1, x2)) = x1
POL(-'(x1, x2)) = [2]x1
POL(0) = 0
POL(LEQ(x1, x2)) = [1] + [2]x2
POL(MOD(x1, x2)) = [2]x1·x2 + x12
POL(c2(x1)) = x1
POL(c6(x1)) = x1
POL(c9(x1, x2, x3)) = x1 + x2 + x3
POL(s(x1)) = [2] + x1
Tuples:
-(s(z0), s(z1)) → -(z0, z1)
-(z0, 0) → z0
S tuples:none
LEQ(s(z0), s(z1)) → c2(LEQ(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
MOD(s(z0), s(z1)) → c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1)))
Defined Rule Symbols:
MOD(s(z0), s(z1)) → c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1)))
LEQ(s(z0), s(z1)) → c2(LEQ(z0, z1))
-'(s(z0), s(z1)) → c6(-'(z0, z1))
-
LEQ, -', MOD
c2, c6, c9