(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
log(x, s(s(y))) → cond(le(x, s(s(y))), x, y)
cond(true, x, y) → s(0)
cond(false, x, y) → double(log(x, square(s(s(y)))))
le(0, v) → true
le(s(u), 0) → false
le(s(u), s(v)) → le(u, v)
double(0) → 0
double(s(x)) → s(s(double(x)))
square(0) → 0
square(s(x)) → s(plus(square(x), double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
le(s(u), s(v)) →+ le(u, v)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [u / s(u), v / s(v)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
log(x, s(s(y))) → cond(le(x, s(s(y))), x, y)
cond(true, x, y) → s(0')
cond(false, x, y) → double(log(x, square(s(s(y)))))
le(0', v) → true
le(s(u), 0') → false
le(s(u), s(v)) → le(u, v)
double(0') → 0'
double(s(x)) → s(s(double(x)))
square(0') → 0'
square(s(x)) → s(plus(square(x), double(x)))
plus(n, 0') → n
plus(n, s(m)) → s(plus(n, m))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
log(x, s(s(y))) → cond(le(x, s(s(y))), x, y)
cond(true, x, y) → s(0')
cond(false, x, y) → double(log(x, square(s(s(y)))))
le(0', v) → true
le(s(u), 0') → false
le(s(u), s(v)) → le(u, v)
double(0') → 0'
double(s(x)) → s(s(double(x)))
square(0') → 0'
square(s(x)) → s(plus(square(x), double(x)))
plus(n, 0') → n
plus(n, s(m)) → s(plus(n, m))
Types:
log :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
cond :: true:false → s:0' → s:0' → s:0'
le :: s:0' → s:0' → true:false
true :: true:false
0' :: s:0'
false :: true:false
double :: s:0' → s:0'
square :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
log,
le,
double,
square,
plusThey will be analysed ascendingly in the following order:
le < log
double < log
square < log
double < square
plus < square
(8) Obligation:
TRS:
Rules:
log(
x,
s(
s(
y))) →
cond(
le(
x,
s(
s(
y))),
x,
y)
cond(
true,
x,
y) →
s(
0')
cond(
false,
x,
y) →
double(
log(
x,
square(
s(
s(
y)))))
le(
0',
v) →
truele(
s(
u),
0') →
falsele(
s(
u),
s(
v)) →
le(
u,
v)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
square(
0') →
0'square(
s(
x)) →
s(
plus(
square(
x),
double(
x)))
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
Types:
log :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
cond :: true:false → s:0' → s:0' → s:0'
le :: s:0' → s:0' → true:false
true :: true:false
0' :: s:0'
false :: true:false
double :: s:0' → s:0'
square :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
le, log, double, square, plus
They will be analysed ascendingly in the following order:
le < log
double < log
square < log
double < square
plus < square
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
le(
gen_s:0'3_0(
n5_0),
gen_s:0'3_0(
n5_0)) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
le(gen_s:0'3_0(0), gen_s:0'3_0(0)) →RΩ(1)
true
Induction Step:
le(gen_s:0'3_0(+(n5_0, 1)), gen_s:0'3_0(+(n5_0, 1))) →RΩ(1)
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
log(
x,
s(
s(
y))) →
cond(
le(
x,
s(
s(
y))),
x,
y)
cond(
true,
x,
y) →
s(
0')
cond(
false,
x,
y) →
double(
log(
x,
square(
s(
s(
y)))))
le(
0',
v) →
truele(
s(
u),
0') →
falsele(
s(
u),
s(
v)) →
le(
u,
v)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
square(
0') →
0'square(
s(
x)) →
s(
plus(
square(
x),
double(
x)))
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
Types:
log :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
cond :: true:false → s:0' → s:0' → s:0'
le :: s:0' → s:0' → true:false
true :: true:false
0' :: s:0'
false :: true:false
double :: s:0' → s:0'
square :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
double, log, square, plus
They will be analysed ascendingly in the following order:
double < log
square < log
double < square
plus < square
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
double(
gen_s:0'3_0(
n288_0)) →
gen_s:0'3_0(
*(
2,
n288_0)), rt ∈ Ω(1 + n288
0)
Induction Base:
double(gen_s:0'3_0(0)) →RΩ(1)
0'
Induction Step:
double(gen_s:0'3_0(+(n288_0, 1))) →RΩ(1)
s(s(double(gen_s:0'3_0(n288_0)))) →IH
s(s(gen_s:0'3_0(*(2, c289_0))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
log(
x,
s(
s(
y))) →
cond(
le(
x,
s(
s(
y))),
x,
y)
cond(
true,
x,
y) →
s(
0')
cond(
false,
x,
y) →
double(
log(
x,
square(
s(
s(
y)))))
le(
0',
v) →
truele(
s(
u),
0') →
falsele(
s(
u),
s(
v)) →
le(
u,
v)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
square(
0') →
0'square(
s(
x)) →
s(
plus(
square(
x),
double(
x)))
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
Types:
log :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
cond :: true:false → s:0' → s:0' → s:0'
le :: s:0' → s:0' → true:false
true :: true:false
0' :: s:0'
false :: true:false
double :: s:0' → s:0'
square :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
double(gen_s:0'3_0(n288_0)) → gen_s:0'3_0(*(2, n288_0)), rt ∈ Ω(1 + n2880)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
plus, log, square
They will be analysed ascendingly in the following order:
square < log
plus < square
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_s:0'3_0(
a),
gen_s:0'3_0(
n544_0)) →
gen_s:0'3_0(
+(
n544_0,
a)), rt ∈ Ω(1 + n544
0)
Induction Base:
plus(gen_s:0'3_0(a), gen_s:0'3_0(0)) →RΩ(1)
gen_s:0'3_0(a)
Induction Step:
plus(gen_s:0'3_0(a), gen_s:0'3_0(+(n544_0, 1))) →RΩ(1)
s(plus(gen_s:0'3_0(a), gen_s:0'3_0(n544_0))) →IH
s(gen_s:0'3_0(+(a, c545_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
log(
x,
s(
s(
y))) →
cond(
le(
x,
s(
s(
y))),
x,
y)
cond(
true,
x,
y) →
s(
0')
cond(
false,
x,
y) →
double(
log(
x,
square(
s(
s(
y)))))
le(
0',
v) →
truele(
s(
u),
0') →
falsele(
s(
u),
s(
v)) →
le(
u,
v)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
square(
0') →
0'square(
s(
x)) →
s(
plus(
square(
x),
double(
x)))
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
Types:
log :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
cond :: true:false → s:0' → s:0' → s:0'
le :: s:0' → s:0' → true:false
true :: true:false
0' :: s:0'
false :: true:false
double :: s:0' → s:0'
square :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
double(gen_s:0'3_0(n288_0)) → gen_s:0'3_0(*(2, n288_0)), rt ∈ Ω(1 + n2880)
plus(gen_s:0'3_0(a), gen_s:0'3_0(n544_0)) → gen_s:0'3_0(+(n544_0, a)), rt ∈ Ω(1 + n5440)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
square, log
They will be analysed ascendingly in the following order:
square < log
(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
square(
gen_s:0'3_0(
n1123_0)) →
gen_s:0'3_0(
*(
n1123_0,
n1123_0)), rt ∈ Ω(1 + n1123
0 + n1123
02)
Induction Base:
square(gen_s:0'3_0(0)) →RΩ(1)
0'
Induction Step:
square(gen_s:0'3_0(+(n1123_0, 1))) →RΩ(1)
s(plus(square(gen_s:0'3_0(n1123_0)), double(gen_s:0'3_0(n1123_0)))) →IH
s(plus(gen_s:0'3_0(*(c1124_0, c1124_0)), double(gen_s:0'3_0(n1123_0)))) →LΩ(1 + n11230)
s(plus(gen_s:0'3_0(*(n1123_0, n1123_0)), gen_s:0'3_0(*(2, n1123_0)))) →LΩ(1 + 2·n11230)
s(gen_s:0'3_0(+(*(2, n1123_0), *(n1123_0, n1123_0))))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(19) Complex Obligation (BEST)
(20) Obligation:
TRS:
Rules:
log(
x,
s(
s(
y))) →
cond(
le(
x,
s(
s(
y))),
x,
y)
cond(
true,
x,
y) →
s(
0')
cond(
false,
x,
y) →
double(
log(
x,
square(
s(
s(
y)))))
le(
0',
v) →
truele(
s(
u),
0') →
falsele(
s(
u),
s(
v)) →
le(
u,
v)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
square(
0') →
0'square(
s(
x)) →
s(
plus(
square(
x),
double(
x)))
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
Types:
log :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
cond :: true:false → s:0' → s:0' → s:0'
le :: s:0' → s:0' → true:false
true :: true:false
0' :: s:0'
false :: true:false
double :: s:0' → s:0'
square :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
double(gen_s:0'3_0(n288_0)) → gen_s:0'3_0(*(2, n288_0)), rt ∈ Ω(1 + n2880)
plus(gen_s:0'3_0(a), gen_s:0'3_0(n544_0)) → gen_s:0'3_0(+(n544_0, a)), rt ∈ Ω(1 + n5440)
square(gen_s:0'3_0(n1123_0)) → gen_s:0'3_0(*(n1123_0, n1123_0)), rt ∈ Ω(1 + n11230 + n112302)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
log
(21) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol log.
(22) Obligation:
TRS:
Rules:
log(
x,
s(
s(
y))) →
cond(
le(
x,
s(
s(
y))),
x,
y)
cond(
true,
x,
y) →
s(
0')
cond(
false,
x,
y) →
double(
log(
x,
square(
s(
s(
y)))))
le(
0',
v) →
truele(
s(
u),
0') →
falsele(
s(
u),
s(
v)) →
le(
u,
v)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
square(
0') →
0'square(
s(
x)) →
s(
plus(
square(
x),
double(
x)))
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
Types:
log :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
cond :: true:false → s:0' → s:0' → s:0'
le :: s:0' → s:0' → true:false
true :: true:false
0' :: s:0'
false :: true:false
double :: s:0' → s:0'
square :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
double(gen_s:0'3_0(n288_0)) → gen_s:0'3_0(*(2, n288_0)), rt ∈ Ω(1 + n2880)
plus(gen_s:0'3_0(a), gen_s:0'3_0(n544_0)) → gen_s:0'3_0(+(n544_0, a)), rt ∈ Ω(1 + n5440)
square(gen_s:0'3_0(n1123_0)) → gen_s:0'3_0(*(n1123_0, n1123_0)), rt ∈ Ω(1 + n11230 + n112302)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
square(gen_s:0'3_0(n1123_0)) → gen_s:0'3_0(*(n1123_0, n1123_0)), rt ∈ Ω(1 + n11230 + n112302)
(24) BOUNDS(n^2, INF)
(25) Obligation:
TRS:
Rules:
log(
x,
s(
s(
y))) →
cond(
le(
x,
s(
s(
y))),
x,
y)
cond(
true,
x,
y) →
s(
0')
cond(
false,
x,
y) →
double(
log(
x,
square(
s(
s(
y)))))
le(
0',
v) →
truele(
s(
u),
0') →
falsele(
s(
u),
s(
v)) →
le(
u,
v)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
square(
0') →
0'square(
s(
x)) →
s(
plus(
square(
x),
double(
x)))
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
Types:
log :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
cond :: true:false → s:0' → s:0' → s:0'
le :: s:0' → s:0' → true:false
true :: true:false
0' :: s:0'
false :: true:false
double :: s:0' → s:0'
square :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
double(gen_s:0'3_0(n288_0)) → gen_s:0'3_0(*(2, n288_0)), rt ∈ Ω(1 + n2880)
plus(gen_s:0'3_0(a), gen_s:0'3_0(n544_0)) → gen_s:0'3_0(+(n544_0, a)), rt ∈ Ω(1 + n5440)
square(gen_s:0'3_0(n1123_0)) → gen_s:0'3_0(*(n1123_0, n1123_0)), rt ∈ Ω(1 + n11230 + n112302)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(26) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
square(gen_s:0'3_0(n1123_0)) → gen_s:0'3_0(*(n1123_0, n1123_0)), rt ∈ Ω(1 + n11230 + n112302)
(27) BOUNDS(n^2, INF)
(28) Obligation:
TRS:
Rules:
log(
x,
s(
s(
y))) →
cond(
le(
x,
s(
s(
y))),
x,
y)
cond(
true,
x,
y) →
s(
0')
cond(
false,
x,
y) →
double(
log(
x,
square(
s(
s(
y)))))
le(
0',
v) →
truele(
s(
u),
0') →
falsele(
s(
u),
s(
v)) →
le(
u,
v)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
square(
0') →
0'square(
s(
x)) →
s(
plus(
square(
x),
double(
x)))
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
Types:
log :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
cond :: true:false → s:0' → s:0' → s:0'
le :: s:0' → s:0' → true:false
true :: true:false
0' :: s:0'
false :: true:false
double :: s:0' → s:0'
square :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
double(gen_s:0'3_0(n288_0)) → gen_s:0'3_0(*(2, n288_0)), rt ∈ Ω(1 + n2880)
plus(gen_s:0'3_0(a), gen_s:0'3_0(n544_0)) → gen_s:0'3_0(+(n544_0, a)), rt ∈ Ω(1 + n5440)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(29) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(30) BOUNDS(n^1, INF)
(31) Obligation:
TRS:
Rules:
log(
x,
s(
s(
y))) →
cond(
le(
x,
s(
s(
y))),
x,
y)
cond(
true,
x,
y) →
s(
0')
cond(
false,
x,
y) →
double(
log(
x,
square(
s(
s(
y)))))
le(
0',
v) →
truele(
s(
u),
0') →
falsele(
s(
u),
s(
v)) →
le(
u,
v)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
square(
0') →
0'square(
s(
x)) →
s(
plus(
square(
x),
double(
x)))
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
Types:
log :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
cond :: true:false → s:0' → s:0' → s:0'
le :: s:0' → s:0' → true:false
true :: true:false
0' :: s:0'
false :: true:false
double :: s:0' → s:0'
square :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
double(gen_s:0'3_0(n288_0)) → gen_s:0'3_0(*(2, n288_0)), rt ∈ Ω(1 + n2880)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(32) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(33) BOUNDS(n^1, INF)
(34) Obligation:
TRS:
Rules:
log(
x,
s(
s(
y))) →
cond(
le(
x,
s(
s(
y))),
x,
y)
cond(
true,
x,
y) →
s(
0')
cond(
false,
x,
y) →
double(
log(
x,
square(
s(
s(
y)))))
le(
0',
v) →
truele(
s(
u),
0') →
falsele(
s(
u),
s(
v)) →
le(
u,
v)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
square(
0') →
0'square(
s(
x)) →
s(
plus(
square(
x),
double(
x)))
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
Types:
log :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
cond :: true:false → s:0' → s:0' → s:0'
le :: s:0' → s:0' → true:false
true :: true:false
0' :: s:0'
false :: true:false
double :: s:0' → s:0'
square :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(35) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(36) BOUNDS(n^1, INF)