0 CpxTRS
↳1 NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID), 14 ms)
↳2 CpxTRS
↳3 RcToIrcProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTRS
↳5 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 0 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 58 ms)
↳12 CdtProblem
↳13 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 BOUNDS(1, 1)
h(z, e(x)) → h(c(z), d(z, x))
d(z, g(0, 0)) → e(0)
d(z, g(x, y)) → g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) → g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) → e(g(x, y))
h(z, e(x)) → h(c(z), d(z, x))
g(e(x), e(y)) → e(g(x, y))
As the TRS does not nest defined symbols, we have rc = irc.
h(z, e(x)) → h(c(z), d(z, x))
g(e(x), e(y)) → e(g(x, y))
Tuples:
h(z0, e(z1)) → h(c(z0), d(z0, z1))
g(e(z0), e(z1)) → e(g(z0, z1))
S tuples:
H(z0, e(z1)) → c1(H(c(z0), d(z0, z1)))
G(e(z0), e(z1)) → c2(G(z0, z1))
K tuples:none
H(z0, e(z1)) → c1(H(c(z0), d(z0, z1)))
G(e(z0), e(z1)) → c2(G(z0, z1))
h, g
H, G
c1, c2
H(z0, e(z1)) → c1(H(c(z0), d(z0, z1)))
Tuples:
h(z0, e(z1)) → h(c(z0), d(z0, z1))
g(e(z0), e(z1)) → e(g(z0, z1))
S tuples:
G(e(z0), e(z1)) → c2(G(z0, z1))
K tuples:none
G(e(z0), e(z1)) → c2(G(z0, z1))
h, g
G
c2
h(z0, e(z1)) → h(c(z0), d(z0, z1))
g(e(z0), e(z1)) → e(g(z0, z1))
S tuples:
G(e(z0), e(z1)) → c2(G(z0, z1))
K tuples:none
G(e(z0), e(z1)) → c2(G(z0, z1))
G
c2
We considered the (Usable) Rules:none
G(e(z0), e(z1)) → c2(G(z0, z1))
The order we found is given by the following interpretation:
G(e(z0), e(z1)) → c2(G(z0, z1))
POL(G(x1, x2)) = x2
POL(c2(x1)) = x1
POL(e(x1)) = [1] + x1
S tuples:none
G(e(z0), e(z1)) → c2(G(z0, z1))
Defined Rule Symbols:none
G(e(z0), e(z1)) → c2(G(z0, z1))
G
c2