(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
p(s(x)) → x
fact(0) → s(0)
fact(s(x)) → *(s(x), fact(p(s(x))))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
fact(s(x)) →+ +(*(x, fact(x)), fact(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,1].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
The rewrite sequence
fact(s(x)) →+ +(*(x, fact(x)), fact(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
p(s(x)) → x
fact(0') → s(0')
fact(s(x)) → *'(s(x), fact(p(s(x))))
*'(0', y) → 0'
*'(s(x), y) → +'(*'(x, y), y)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
p(s(x)) → x
fact(0') → s(0')
fact(s(x)) → *'(s(x), fact(p(s(x))))
*'(0', y) → 0'
*'(s(x), y) → +'(*'(x, y), y)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
fact :: s:0' → s:0'
0' :: s:0'
*' :: s:0' → s:0' → s:0'
+' :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
fact,
*',
+'They will be analysed ascendingly in the following order:
*' < fact
+' < *'
(8) Obligation:
TRS:
Rules:
p(
s(
x)) →
xfact(
0') →
s(
0')
fact(
s(
x)) →
*'(
s(
x),
fact(
p(
s(
x))))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
*'(
x,
y),
y)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
fact :: s:0' → s:0'
0' :: s:0'
*' :: s:0' → s:0' → s:0'
+' :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
+', fact, *'
They will be analysed ascendingly in the following order:
*' < fact
+' < *'
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_s:0'2_0(
a),
gen_s:0'2_0(
n4_0)) →
gen_s:0'2_0(
+(
n4_0,
a)), rt ∈ Ω(1 + n4
0)
Induction Base:
+'(gen_s:0'2_0(a), gen_s:0'2_0(0)) →RΩ(1)
gen_s:0'2_0(a)
Induction Step:
+'(gen_s:0'2_0(a), gen_s:0'2_0(+(n4_0, 1))) →RΩ(1)
s(+'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0))) →IH
s(gen_s:0'2_0(+(a, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
p(
s(
x)) →
xfact(
0') →
s(
0')
fact(
s(
x)) →
*'(
s(
x),
fact(
p(
s(
x))))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
*'(
x,
y),
y)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
fact :: s:0' → s:0'
0' :: s:0'
*' :: s:0' → s:0' → s:0'
+' :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
+'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
*', fact
They will be analysed ascendingly in the following order:
*' < fact
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
*'(
gen_s:0'2_0(
n457_0),
gen_s:0'2_0(
b)) →
gen_s:0'2_0(
*(
n457_0,
b)), rt ∈ Ω(1 + b·n457
0 + n457
0)
Induction Base:
*'(gen_s:0'2_0(0), gen_s:0'2_0(b)) →RΩ(1)
0'
Induction Step:
*'(gen_s:0'2_0(+(n457_0, 1)), gen_s:0'2_0(b)) →RΩ(1)
+'(*'(gen_s:0'2_0(n457_0), gen_s:0'2_0(b)), gen_s:0'2_0(b)) →IH
+'(gen_s:0'2_0(*(c458_0, b)), gen_s:0'2_0(b)) →LΩ(1 + b)
gen_s:0'2_0(+(b, *(n457_0, b)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
p(
s(
x)) →
xfact(
0') →
s(
0')
fact(
s(
x)) →
*'(
s(
x),
fact(
p(
s(
x))))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
*'(
x,
y),
y)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
fact :: s:0' → s:0'
0' :: s:0'
*' :: s:0' → s:0' → s:0'
+' :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
+'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_s:0'2_0(n457_0), gen_s:0'2_0(b)) → gen_s:0'2_0(*(n457_0, b)), rt ∈ Ω(1 + b·n4570 + n4570)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
fact
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
fact(
gen_s:0'2_0(
n1007_0)) →
*3_0, rt ∈ Ω(n1007
0)
Induction Base:
fact(gen_s:0'2_0(0))
Induction Step:
fact(gen_s:0'2_0(+(n1007_0, 1))) →RΩ(1)
*'(s(gen_s:0'2_0(n1007_0)), fact(p(s(gen_s:0'2_0(n1007_0))))) →RΩ(1)
*'(s(gen_s:0'2_0(n1007_0)), fact(gen_s:0'2_0(n1007_0))) →IH
*'(s(gen_s:0'2_0(n1007_0)), *3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
p(
s(
x)) →
xfact(
0') →
s(
0')
fact(
s(
x)) →
*'(
s(
x),
fact(
p(
s(
x))))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
*'(
x,
y),
y)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
fact :: s:0' → s:0'
0' :: s:0'
*' :: s:0' → s:0' → s:0'
+' :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
+'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_s:0'2_0(n457_0), gen_s:0'2_0(b)) → gen_s:0'2_0(*(n457_0, b)), rt ∈ Ω(1 + b·n4570 + n4570)
fact(gen_s:0'2_0(n1007_0)) → *3_0, rt ∈ Ω(n10070)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
*'(gen_s:0'2_0(n457_0), gen_s:0'2_0(b)) → gen_s:0'2_0(*(n457_0, b)), rt ∈ Ω(1 + b·n4570 + n4570)
(19) BOUNDS(n^2, INF)
(20) Obligation:
TRS:
Rules:
p(
s(
x)) →
xfact(
0') →
s(
0')
fact(
s(
x)) →
*'(
s(
x),
fact(
p(
s(
x))))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
*'(
x,
y),
y)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
fact :: s:0' → s:0'
0' :: s:0'
*' :: s:0' → s:0' → s:0'
+' :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
+'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_s:0'2_0(n457_0), gen_s:0'2_0(b)) → gen_s:0'2_0(*(n457_0, b)), rt ∈ Ω(1 + b·n4570 + n4570)
fact(gen_s:0'2_0(n1007_0)) → *3_0, rt ∈ Ω(n10070)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
*'(gen_s:0'2_0(n457_0), gen_s:0'2_0(b)) → gen_s:0'2_0(*(n457_0, b)), rt ∈ Ω(1 + b·n4570 + n4570)
(22) BOUNDS(n^2, INF)
(23) Obligation:
TRS:
Rules:
p(
s(
x)) →
xfact(
0') →
s(
0')
fact(
s(
x)) →
*'(
s(
x),
fact(
p(
s(
x))))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
*'(
x,
y),
y)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
fact :: s:0' → s:0'
0' :: s:0'
*' :: s:0' → s:0' → s:0'
+' :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
+'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_s:0'2_0(n457_0), gen_s:0'2_0(b)) → gen_s:0'2_0(*(n457_0, b)), rt ∈ Ω(1 + b·n4570 + n4570)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
*'(gen_s:0'2_0(n457_0), gen_s:0'2_0(b)) → gen_s:0'2_0(*(n457_0, b)), rt ∈ Ω(1 + b·n4570 + n4570)
(25) BOUNDS(n^2, INF)
(26) Obligation:
TRS:
Rules:
p(
s(
x)) →
xfact(
0') →
s(
0')
fact(
s(
x)) →
*'(
s(
x),
fact(
p(
s(
x))))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
*'(
x,
y),
y)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
fact :: s:0' → s:0'
0' :: s:0'
*' :: s:0' → s:0' → s:0'
+' :: s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
+'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
(28) BOUNDS(n^1, INF)