(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
not(or(x, y)) →+ and(not(not(not(x))), not(not(not(y))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0,0].
The pumping substitution is [x / or(x, y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))
Types:
not :: or:and → or:and
or :: or:and → or:and → or:and
and :: or:and → or:and → or:and
hole_or:and1_0 :: or:and
gen_or:and2_0 :: Nat → or:and
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
not
(8) Obligation:
TRS:
Rules:
not(
not(
x)) →
xnot(
or(
x,
y)) →
and(
not(
not(
not(
x))),
not(
not(
not(
y))))
not(
and(
x,
y)) →
or(
not(
not(
not(
x))),
not(
not(
not(
y))))
Types:
not :: or:and → or:and
or :: or:and → or:and → or:and
and :: or:and → or:and → or:and
hole_or:and1_0 :: or:and
gen_or:and2_0 :: Nat → or:and
Generator Equations:
gen_or:and2_0(0) ⇔ hole_or:and1_0
gen_or:and2_0(+(x, 1)) ⇔ or(hole_or:and1_0, gen_or:and2_0(x))
The following defined symbols remain to be analysed:
not
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
not(
gen_or:and2_0(
n4_0)) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
not(gen_or:and2_0(0))
Induction Step:
not(gen_or:and2_0(+(n4_0, 1))) →RΩ(1)
and(not(not(not(hole_or:and1_0))), not(not(not(gen_or:and2_0(n4_0))))) →RΩ(1)
and(not(hole_or:and1_0), not(not(not(gen_or:and2_0(n4_0))))) →IH
and(not(hole_or:and1_0), not(not(*3_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
not(
not(
x)) →
xnot(
or(
x,
y)) →
and(
not(
not(
not(
x))),
not(
not(
not(
y))))
not(
and(
x,
y)) →
or(
not(
not(
not(
x))),
not(
not(
not(
y))))
Types:
not :: or:and → or:and
or :: or:and → or:and → or:and
and :: or:and → or:and → or:and
hole_or:and1_0 :: or:and
gen_or:and2_0 :: Nat → or:and
Lemmas:
not(gen_or:and2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_or:and2_0(0) ⇔ hole_or:and1_0
gen_or:and2_0(+(x, 1)) ⇔ or(hole_or:and1_0, gen_or:and2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
not(gen_or:and2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
not(
not(
x)) →
xnot(
or(
x,
y)) →
and(
not(
not(
not(
x))),
not(
not(
not(
y))))
not(
and(
x,
y)) →
or(
not(
not(
not(
x))),
not(
not(
not(
y))))
Types:
not :: or:and → or:and
or :: or:and → or:and → or:and
and :: or:and → or:and → or:and
hole_or:and1_0 :: or:and
gen_or:and2_0 :: Nat → or:and
Lemmas:
not(gen_or:and2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_or:and2_0(0) ⇔ hole_or:and1_0
gen_or:and2_0(+(x, 1)) ⇔ or(hole_or:and1_0, gen_or:and2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
not(gen_or:and2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(16) BOUNDS(n^1, INF)