### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

not(not(x)) → x
not(or(x, y)) → and(not(x), not(y))
not(and(x, y)) → or(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(or(y, z), x) → or(and(x, y), and(x, z))

Rewrite Strategy: FULL

### (1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
not(or(x, y)) →+ and(not(x), not(y))
gives rise to a decreasing loop by considering the right hand sides subterm at position .
The pumping substitution is [x / or(x, y)].
The result substitution is [ ].

### (3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

### (4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

not(not(x)) → x
not(or(x, y)) → and(not(x), not(y))
not(and(x, y)) → or(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(or(y, z), x) → or(and(x, y), and(x, z))

S is empty.
Rewrite Strategy: FULL

Infered types.

### (6) Obligation:

TRS:
Rules:
not(not(x)) → x
not(or(x, y)) → and(not(x), not(y))
not(and(x, y)) → or(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(or(y, z), x) → or(and(x, y), and(x, z))

Types:
not :: or → or
or :: or → or → or
and :: or → or → or
hole_or1_0 :: or
gen_or2_0 :: Nat → or

### (7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
not, and

They will be analysed ascendingly in the following order:
and < not

### (8) Obligation:

TRS:
Rules:
not(not(x)) → x
not(or(x, y)) → and(not(x), not(y))
not(and(x, y)) → or(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(or(y, z), x) → or(and(x, y), and(x, z))

Types:
not :: or → or
or :: or → or → or
and :: or → or → or
hole_or1_0 :: or
gen_or2_0 :: Nat → or

Generator Equations:
gen_or2_0(0) ⇔ hole_or1_0
gen_or2_0(+(x, 1)) ⇔ or(hole_or1_0, gen_or2_0(x))

The following defined symbols remain to be analysed:
and, not

They will be analysed ascendingly in the following order:
and < not

### (9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol and.

### (10) Obligation:

TRS:
Rules:
not(not(x)) → x
not(or(x, y)) → and(not(x), not(y))
not(and(x, y)) → or(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(or(y, z), x) → or(and(x, y), and(x, z))

Types:
not :: or → or
or :: or → or → or
and :: or → or → or
hole_or1_0 :: or
gen_or2_0 :: Nat → or

Generator Equations:
gen_or2_0(0) ⇔ hole_or1_0
gen_or2_0(+(x, 1)) ⇔ or(hole_or1_0, gen_or2_0(x))

The following defined symbols remain to be analysed:
not

### (11) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
not(gen_or2_0(+(1, n10791_0))) → *3_0, rt ∈ Ω(n107910)

Induction Base:
not(gen_or2_0(+(1, 0)))

Induction Step:
not(gen_or2_0(+(1, +(n10791_0, 1)))) →RΩ(1)
and(not(hole_or1_0), not(gen_or2_0(+(1, n10791_0)))) →IH
and(not(hole_or1_0), *3_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (13) Obligation:

TRS:
Rules:
not(not(x)) → x
not(or(x, y)) → and(not(x), not(y))
not(and(x, y)) → or(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(or(y, z), x) → or(and(x, y), and(x, z))

Types:
not :: or → or
or :: or → or → or
and :: or → or → or
hole_or1_0 :: or
gen_or2_0 :: Nat → or

Lemmas:
not(gen_or2_0(+(1, n10791_0))) → *3_0, rt ∈ Ω(n107910)

Generator Equations:
gen_or2_0(0) ⇔ hole_or1_0
gen_or2_0(+(x, 1)) ⇔ or(hole_or1_0, gen_or2_0(x))

No more defined symbols left to analyse.

### (14) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
not(gen_or2_0(+(1, n10791_0))) → *3_0, rt ∈ Ω(n107910)

### (16) Obligation:

TRS:
Rules:
not(not(x)) → x
not(or(x, y)) → and(not(x), not(y))
not(and(x, y)) → or(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(or(y, z), x) → or(and(x, y), and(x, z))

Types:
not :: or → or
or :: or → or → or
and :: or → or → or
hole_or1_0 :: or
gen_or2_0 :: Nat → or

Lemmas:
not(gen_or2_0(+(1, n10791_0))) → *3_0, rt ∈ Ω(n107910)

Generator Equations:
gen_or2_0(0) ⇔ hole_or1_0
gen_or2_0(+(x, 1)) ⇔ or(hole_or1_0, gen_or2_0(x))

No more defined symbols left to analyse.

### (17) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
not(gen_or2_0(+(1, n10791_0))) → *3_0, rt ∈ Ω(n107910)