* Step 1: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            D(*(x,y)) -> +(*(y,D(x)),*(x,D(y)))
            D(+(x,y)) -> +(D(x),D(y))
            D(-(x,y)) -> -(D(x),D(y))
            D(constant()) -> 0()
            D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,2())))
            D(ln(x)) -> div(D(x),x)
            D(minus(x)) -> minus(D(x))
            D(pow(x,y)) -> +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y)))
            D(t()) -> 1()
        - Signature:
            {D/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0}
        - Obligation:
             runtime complexity wrt. defined symbols {D} and constructors {*,+,-,0,1,2,constant,div,ln,minus,pow,t}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(*) = {2},
            uargs(+) = {1,2},
            uargs(-) = {1,2},
            uargs(div) = {1},
            uargs(minus) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(*) = [1] x2 + [1]         
                   p(+) = [1] x1 + [1] x2 + [4]
                   p(-) = [1] x1 + [1] x2 + [5]
                   p(0) = [2]                  
                   p(1) = [3]                  
                   p(2) = [0]                  
                   p(D) = [4]                  
            p(constant) = [1]                  
                 p(div) = [1] x1 + [0]         
                  p(ln) = [7]                  
               p(minus) = [1] x1 + [0]         
                 p(pow) = [7]                  
                   p(t) = [4]                  
          
          Following rules are strictly oriented:
          D(constant()) = [4]
                        > [2]
                        = 0()
          
                 D(t()) = [4]
                        > [3]
                        = 1()
          
          
          Following rules are (at-least) weakly oriented:
            D(*(x,y)) =  [4]                                                      
                      >= [14]                                                     
                      =  +(*(y,D(x)),*(x,D(y)))                                   
          
            D(+(x,y)) =  [4]                                                      
                      >= [12]                                                     
                      =  +(D(x),D(y))                                             
          
            D(-(x,y)) =  [4]                                                      
                      >= [13]                                                     
                      =  -(D(x),D(y))                                             
          
          D(div(x,y)) =  [4]                                                      
                      >= [14]                                                     
                      =  -(div(D(x),y),div(*(x,D(y)),pow(y,2())))                 
          
             D(ln(x)) =  [4]                                                      
                      >= [4]                                                      
                      =  div(D(x),x)                                              
          
          D(minus(x)) =  [4]                                                      
                      >= [4]                                                      
                      =  minus(D(x))                                              
          
          D(pow(x,y)) =  [4]                                                      
                      >= [14]                                                     
                      =  +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y)))
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 2: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            D(*(x,y)) -> +(*(y,D(x)),*(x,D(y)))
            D(+(x,y)) -> +(D(x),D(y))
            D(-(x,y)) -> -(D(x),D(y))
            D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,2())))
            D(ln(x)) -> div(D(x),x)
            D(minus(x)) -> minus(D(x))
            D(pow(x,y)) -> +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y)))
        - Weak TRS:
            D(constant()) -> 0()
            D(t()) -> 1()
        - Signature:
            {D/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0}
        - Obligation:
             runtime complexity wrt. defined symbols {D} and constructors {*,+,-,0,1,2,constant,div,ln,minus,pow,t}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(*) = {2},
          uargs(+) = {1,2},
          uargs(-) = {1,2},
          uargs(div) = {1},
          uargs(minus) = {1}
        
        Following symbols are considered usable:
          all
        TcT has computed the following interpretation:
                 p(*) = 1 + x1 + x2  
                 p(+) = x1 + x2      
                 p(-) = x1 + x2      
                 p(0) = 0            
                 p(1) = 0            
                 p(2) = 0            
                 p(D) = 4*x1 + 4*x1^2
          p(constant) = 0            
               p(div) = 1 + x1 + x2  
                p(ln) = 1 + x1       
             p(minus) = x1           
               p(pow) = 1 + x1 + x2  
                 p(t) = 0            
        
        Following rules are strictly oriented:
          D(*(x,y)) = 8 + 12*x + 8*x*y + 4*x^2 + 12*y + 4*y^2                  
                    > 2 + 5*x + 4*x^2 + 5*y + 4*y^2                            
                    = +(*(y,D(x)),*(x,D(y)))                                   
        
        D(div(x,y)) = 8 + 12*x + 8*x*y + 4*x^2 + 12*y + 4*y^2                  
                    > 4 + 5*x + 4*x^2 + 6*y + 4*y^2                            
                    = -(div(D(x),y),div(*(x,D(y)),pow(y,2())))                 
        
           D(ln(x)) = 8 + 12*x + 4*x^2                                         
                    > 1 + 5*x + 4*x^2                                          
                    = div(D(x),x)                                              
        
        D(pow(x,y)) = 8 + 12*x + 8*x*y + 4*x^2 + 12*y + 4*y^2                  
                    > 7 + 7*x + 4*x^2 + 7*y + 4*y^2                            
                    = +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y)))
        
        
        Following rules are (at-least) weakly oriented:
            D(+(x,y)) =  4*x + 8*x*y + 4*x^2 + 4*y + 4*y^2
                      >= 4*x + 4*x^2 + 4*y + 4*y^2        
                      =  +(D(x),D(y))                     
        
            D(-(x,y)) =  4*x + 8*x*y + 4*x^2 + 4*y + 4*y^2
                      >= 4*x + 4*x^2 + 4*y + 4*y^2        
                      =  -(D(x),D(y))                     
        
        D(constant()) =  0                                
                      >= 0                                
                      =  0()                              
        
          D(minus(x)) =  4*x + 4*x^2                      
                      >= 4*x + 4*x^2                      
                      =  minus(D(x))                      
        
               D(t()) =  0                                
                      >= 0                                
                      =  1()                              
        
* Step 3: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            D(+(x,y)) -> +(D(x),D(y))
            D(-(x,y)) -> -(D(x),D(y))
            D(minus(x)) -> minus(D(x))
        - Weak TRS:
            D(*(x,y)) -> +(*(y,D(x)),*(x,D(y)))
            D(constant()) -> 0()
            D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,2())))
            D(ln(x)) -> div(D(x),x)
            D(pow(x,y)) -> +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y)))
            D(t()) -> 1()
        - Signature:
            {D/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0}
        - Obligation:
             runtime complexity wrt. defined symbols {D} and constructors {*,+,-,0,1,2,constant,div,ln,minus,pow,t}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(*) = {2},
          uargs(+) = {1,2},
          uargs(-) = {1,2},
          uargs(div) = {1},
          uargs(minus) = {1}
        
        Following symbols are considered usable:
          all
        TcT has computed the following interpretation:
                 p(*) = 1 + x1 + x2
                 p(+) = x1 + x2    
                 p(-) = x1 + x2    
                 p(0) = 0          
                 p(1) = 0          
                 p(2) = 1          
                 p(D) = x1 + 6*x1^2
          p(constant) = 0          
               p(div) = 1 + x1 + x2
                p(ln) = 1 + x1     
             p(minus) = 1 + x1     
               p(pow) = 1 + x1 + x2
                 p(t) = 0          
        
        Following rules are strictly oriented:
        D(minus(x)) = 7 + 13*x + 6*x^2
                    > 1 + x + 6*x^2   
                    = minus(D(x))     
        
        
        Following rules are (at-least) weakly oriented:
            D(*(x,y)) =  7 + 13*x + 12*x*y + 6*x^2 + 13*y + 6*y^2                 
                      >= 2 + 2*x + 6*x^2 + 2*y + 6*y^2                            
                      =  +(*(y,D(x)),*(x,D(y)))                                   
        
            D(+(x,y)) =  x + 12*x*y + 6*x^2 + y + 6*y^2                           
                      >= x + 6*x^2 + y + 6*y^2                                    
                      =  +(D(x),D(y))                                             
        
            D(-(x,y)) =  x + 12*x*y + 6*x^2 + y + 6*y^2                           
                      >= x + 6*x^2 + y + 6*y^2                                    
                      =  -(D(x),D(y))                                             
        
        D(constant()) =  0                                                        
                      >= 0                                                        
                      =  0()                                                      
        
          D(div(x,y)) =  7 + 13*x + 12*x*y + 6*x^2 + 13*y + 6*y^2                 
                      >= 5 + 2*x + 6*x^2 + 3*y + 6*y^2                            
                      =  -(div(D(x),y),div(*(x,D(y)),pow(y,2())))                 
        
             D(ln(x)) =  7 + 13*x + 6*x^2                                         
                      >= 1 + 2*x + 6*x^2                                          
                      =  div(D(x),x)                                              
        
          D(pow(x,y)) =  7 + 13*x + 12*x*y + 6*x^2 + 13*y + 6*y^2                 
                      >= 7 + 4*x + 6*x^2 + 4*y + 6*y^2                            
                      =  +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y)))
        
               D(t()) =  0                                                        
                      >= 0                                                        
                      =  1()                                                      
        
* Step 4: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            D(+(x,y)) -> +(D(x),D(y))
            D(-(x,y)) -> -(D(x),D(y))
        - Weak TRS:
            D(*(x,y)) -> +(*(y,D(x)),*(x,D(y)))
            D(constant()) -> 0()
            D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,2())))
            D(ln(x)) -> div(D(x),x)
            D(minus(x)) -> minus(D(x))
            D(pow(x,y)) -> +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y)))
            D(t()) -> 1()
        - Signature:
            {D/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0}
        - Obligation:
             runtime complexity wrt. defined symbols {D} and constructors {*,+,-,0,1,2,constant,div,ln,minus,pow,t}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(*) = {2},
          uargs(+) = {1,2},
          uargs(-) = {1,2},
          uargs(div) = {1},
          uargs(minus) = {1}
        
        Following symbols are considered usable:
          all
        TcT has computed the following interpretation:
                 p(*) = 1 + x1 + x2  
                 p(+) = x1 + x2      
                 p(-) = 1 + x1 + x2  
                 p(0) = 0            
                 p(1) = 1            
                 p(2) = 1            
                 p(D) = 4*x1 + 5*x1^2
          p(constant) = 0            
               p(div) = 1 + x1 + x2  
                p(ln) = 1 + x1       
             p(minus) = x1           
               p(pow) = 1 + x1 + x2  
                 p(t) = 1            
        
        Following rules are strictly oriented:
        D(-(x,y)) = 9 + 14*x + 10*x*y + 5*x^2 + 14*y + 5*y^2
                  > 1 + 4*x + 5*x^2 + 4*y + 5*y^2           
                  = -(D(x),D(y))                            
        
        
        Following rules are (at-least) weakly oriented:
            D(*(x,y)) =  9 + 14*x + 10*x*y + 5*x^2 + 14*y + 5*y^2                 
                      >= 2 + 5*x + 5*x^2 + 5*y + 5*y^2                            
                      =  +(*(y,D(x)),*(x,D(y)))                                   
        
            D(+(x,y)) =  4*x + 10*x*y + 5*x^2 + 4*y + 5*y^2                       
                      >= 4*x + 5*x^2 + 4*y + 5*y^2                                
                      =  +(D(x),D(y))                                             
        
        D(constant()) =  0                                                        
                      >= 0                                                        
                      =  0()                                                      
        
          D(div(x,y)) =  9 + 14*x + 10*x*y + 5*x^2 + 14*y + 5*y^2                 
                      >= 6 + 5*x + 5*x^2 + 6*y + 5*y^2                            
                      =  -(div(D(x),y),div(*(x,D(y)),pow(y,2())))                 
        
             D(ln(x)) =  9 + 14*x + 5*x^2                                         
                      >= 1 + 5*x + 5*x^2                                          
                      =  div(D(x),x)                                              
        
          D(minus(x)) =  4*x + 5*x^2                                              
                      >= 4*x + 5*x^2                                              
                      =  minus(D(x))                                              
        
          D(pow(x,y)) =  9 + 14*x + 10*x*y + 5*x^2 + 14*y + 5*y^2                 
                      >= 9 + 7*x + 5*x^2 + 7*y + 5*y^2                            
                      =  +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y)))
        
               D(t()) =  9                                                        
                      >= 1                                                        
                      =  1()                                                      
        
* Step 5: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            D(+(x,y)) -> +(D(x),D(y))
        - Weak TRS:
            D(*(x,y)) -> +(*(y,D(x)),*(x,D(y)))
            D(-(x,y)) -> -(D(x),D(y))
            D(constant()) -> 0()
            D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,2())))
            D(ln(x)) -> div(D(x),x)
            D(minus(x)) -> minus(D(x))
            D(pow(x,y)) -> +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y)))
            D(t()) -> 1()
        - Signature:
            {D/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0}
        - Obligation:
             runtime complexity wrt. defined symbols {D} and constructors {*,+,-,0,1,2,constant,div,ln,minus,pow,t}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(*) = {2},
          uargs(+) = {1,2},
          uargs(-) = {1,2},
          uargs(div) = {1},
          uargs(minus) = {1}
        
        Following symbols are considered usable:
          all
        TcT has computed the following interpretation:
                 p(*) = 1 + x1 + x2  
                 p(+) = 1 + x1 + x2  
                 p(-) = x1 + x2      
                 p(0) = 1            
                 p(1) = 0            
                 p(2) = 1            
                 p(D) = 7*x1 + 4*x1^2
          p(constant) = 1            
               p(div) = 1 + x1 + x2  
                p(ln) = 1 + x1       
             p(minus) = x1           
               p(pow) = 1 + x1 + x2  
                 p(t) = 1            
        
        Following rules are strictly oriented:
        D(+(x,y)) = 11 + 15*x + 8*x*y + 4*x^2 + 15*y + 4*y^2
                  > 1 + 7*x + 4*x^2 + 7*y + 4*y^2           
                  = +(D(x),D(y))                            
        
        
        Following rules are (at-least) weakly oriented:
            D(*(x,y)) =  11 + 15*x + 8*x*y + 4*x^2 + 15*y + 4*y^2                 
                      >= 3 + 8*x + 4*x^2 + 8*y + 4*y^2                            
                      =  +(*(y,D(x)),*(x,D(y)))                                   
        
            D(-(x,y)) =  7*x + 8*x*y + 4*x^2 + 7*y + 4*y^2                        
                      >= 7*x + 4*x^2 + 7*y + 4*y^2                                
                      =  -(D(x),D(y))                                             
        
        D(constant()) =  11                                                       
                      >= 1                                                        
                      =  0()                                                      
        
          D(div(x,y)) =  11 + 15*x + 8*x*y + 4*x^2 + 15*y + 4*y^2                 
                      >= 5 + 8*x + 4*x^2 + 9*y + 4*y^2                            
                      =  -(div(D(x),y),div(*(x,D(y)),pow(y,2())))                 
        
             D(ln(x)) =  11 + 15*x + 4*x^2                                        
                      >= 1 + 8*x + 4*x^2                                          
                      =  div(D(x),x)                                              
        
          D(minus(x)) =  7*x + 4*x^2                                              
                      >= 7*x + 4*x^2                                              
                      =  minus(D(x))                                              
        
          D(pow(x,y)) =  11 + 15*x + 8*x*y + 4*x^2 + 15*y + 4*y^2                 
                      >= 8 + 10*x + 4*x^2 + 10*y + 4*y^2                          
                      =  +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y)))
        
               D(t()) =  11                                                       
                      >= 0                                                        
                      =  1()                                                      
        
* Step 6: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            D(*(x,y)) -> +(*(y,D(x)),*(x,D(y)))
            D(+(x,y)) -> +(D(x),D(y))
            D(-(x,y)) -> -(D(x),D(y))
            D(constant()) -> 0()
            D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,2())))
            D(ln(x)) -> div(D(x),x)
            D(minus(x)) -> minus(D(x))
            D(pow(x,y)) -> +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y)))
            D(t()) -> 1()
        - Signature:
            {D/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0}
        - Obligation:
             runtime complexity wrt. defined symbols {D} and constructors {*,+,-,0,1,2,constant,div,ln,minus,pow,t}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^2))