0 CpxTRS
↳1 NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID), 16 ms)
↳2 CpxTRS
↳3 RcToIrcProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTRS
↳5 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 0 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 184 ms)
↳12 CdtProblem
↳13 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 72 ms)
↳14 CdtProblem
↳15 CdtKnowledgeProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CdtProblem
↳17 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 190 ms)
↳18 CdtProblem
↳19 CdtKnowledgeProof (BOTH BOUNDS(ID, ID), 0 ms)
↳20 CdtProblem
↳21 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 148 ms)
↳22 CdtProblem
↳23 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳24 BOUNDS(1, 1)
if(true, x, y) → x
if(false, x, y) → y
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
app(app(l1, l2), l3) → app(l1, app(l2, l3))
mem(x, nil) → false
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
ifmem(true, x, l) → true
ifmem(false, x, l) → mem(x, l)
inter(x, nil) → nil
inter(nil, x) → nil
inter(app(l1, l2), l3) → app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) → app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
ifmem(false, x, l) → mem(x, l)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
mem(x, nil) → false
app(cons(x, l1), l2) → cons(x, app(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)
ifmem(true, x, l) → true
eq(0, 0) → true
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
app(nil, l) → l
inter(x, nil) → nil
inter(nil, x) → nil
if(true, x, y) → x
if(false, x, y) → y
The duplicating contexts are:
inter(cons([], l1), l2)
inter(cons(x, l1), [])
mem([], cons(y, l))
inter(l1, cons([], l2))
inter([], cons(x, l2))
The defined contexts are:
ifinter([], x1, x2, x3)
ifmem([], x1, x2)
[] just represents basic- or constructor-terms in the following defined contexts:
ifmem([], x1, x2)
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
inter(cons(x, l1), l2) → ifinter(mem(x, l2), x, l1, l2)
mem(x, cons(y, l)) → ifmem(eq(x, y), x, l)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
ifmem(false, x, l) → mem(x, l)
ifinter(true, x, l1, l2) → cons(x, inter(l1, l2))
mem(x, nil) → false
app(cons(x, l1), l2) → cons(x, app(l1, l2))
ifinter(false, x, l1, l2) → inter(l1, l2)
ifmem(true, x, l) → true
eq(0, 0) → true
inter(l1, cons(x, l2)) → ifinter(mem(x, l1), x, l2, l1)
app(nil, l) → l
inter(x, nil) → nil
inter(nil, x) → nil
if(true, x, y) → x
if(false, x, y) → y
Tuples:
inter(cons(z0, z1), z2) → ifinter(mem(z0, z2), z0, z1, z2)
inter(z0, cons(z1, z2)) → ifinter(mem(z1, z0), z1, z2, z0)
inter(z0, nil) → nil
inter(nil, z0) → nil
mem(z0, cons(z1, z2)) → ifmem(eq(z0, z1), z0, z2)
mem(z0, nil) → false
eq(0, s(z0)) → false
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
eq(0, 0) → true
ifmem(false, z0, z1) → mem(z0, z1)
ifmem(true, z0, z1) → true
ifinter(true, z0, z1, z2) → cons(z0, inter(z1, z2))
ifinter(false, z0, z1, z2) → inter(z1, z2)
app(cons(z0, z1), z2) → cons(z0, app(z1, z2))
app(nil, z0) → z0
if(true, z0, z1) → z0
if(false, z0, z1) → z1
S tuples:
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
INTER(z0, nil) → c2
INTER(nil, z0) → c3
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
MEM(z0, nil) → c5
EQ(0, s(z0)) → c6
EQ(s(z0), 0) → c7
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
EQ(0, 0) → c9
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
IFMEM(true, z0, z1) → c11
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
APP(nil, z0) → c15
IF(true, z0, z1) → c16
IF(false, z0, z1) → c17
K tuples:none
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
INTER(z0, nil) → c2
INTER(nil, z0) → c3
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
MEM(z0, nil) → c5
EQ(0, s(z0)) → c6
EQ(s(z0), 0) → c7
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
EQ(0, 0) → c9
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
IFMEM(true, z0, z1) → c11
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
APP(nil, z0) → c15
IF(true, z0, z1) → c16
IF(false, z0, z1) → c17
inter, mem, eq, ifmem, ifinter, app, if
INTER, MEM, EQ, IFMEM, IFINTER, APP, IF
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17
EQ(0, s(z0)) → c6
INTER(nil, z0) → c3
IF(false, z0, z1) → c17
EQ(s(z0), 0) → c7
INTER(z0, nil) → c2
IF(true, z0, z1) → c16
IFMEM(true, z0, z1) → c11
MEM(z0, nil) → c5
APP(nil, z0) → c15
EQ(0, 0) → c9
Tuples:
inter(cons(z0, z1), z2) → ifinter(mem(z0, z2), z0, z1, z2)
inter(z0, cons(z1, z2)) → ifinter(mem(z1, z0), z1, z2, z0)
inter(z0, nil) → nil
inter(nil, z0) → nil
mem(z0, cons(z1, z2)) → ifmem(eq(z0, z1), z0, z2)
mem(z0, nil) → false
eq(0, s(z0)) → false
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
eq(0, 0) → true
ifmem(false, z0, z1) → mem(z0, z1)
ifmem(true, z0, z1) → true
ifinter(true, z0, z1, z2) → cons(z0, inter(z1, z2))
ifinter(false, z0, z1, z2) → inter(z1, z2)
app(cons(z0, z1), z2) → cons(z0, app(z1, z2))
app(nil, z0) → z0
if(true, z0, z1) → z0
if(false, z0, z1) → z1
S tuples:
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
K tuples:none
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
inter, mem, eq, ifmem, ifinter, app, if
INTER, MEM, EQ, IFMEM, IFINTER, APP
c, c1, c4, c8, c10, c12, c13, c14
inter(cons(z0, z1), z2) → ifinter(mem(z0, z2), z0, z1, z2)
inter(z0, cons(z1, z2)) → ifinter(mem(z1, z0), z1, z2, z0)
inter(z0, nil) → nil
inter(nil, z0) → nil
ifinter(true, z0, z1, z2) → cons(z0, inter(z1, z2))
ifinter(false, z0, z1, z2) → inter(z1, z2)
app(cons(z0, z1), z2) → cons(z0, app(z1, z2))
app(nil, z0) → z0
if(true, z0, z1) → z0
if(false, z0, z1) → z1
Tuples:
mem(z0, cons(z1, z2)) → ifmem(eq(z0, z1), z0, z2)
mem(z0, nil) → false
ifmem(false, z0, z1) → mem(z0, z1)
ifmem(true, z0, z1) → true
eq(0, s(z0)) → false
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
eq(0, 0) → true
S tuples:
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
K tuples:none
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
mem, ifmem, eq
INTER, MEM, EQ, IFMEM, IFINTER, APP
c, c1, c4, c8, c10, c12, c13, c14
We considered the (Usable) Rules:none
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
The order we found is given by the following interpretation:
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
POL(0) = [1]
POL(APP(x1, x2)) = x1
POL(EQ(x1, x2)) = 0
POL(IFINTER(x1, x2, x3, x4)) = 0
POL(IFMEM(x1, x2, x3)) = 0
POL(INTER(x1, x2)) = 0
POL(MEM(x1, x2)) = 0
POL(c(x1, x2)) = x1 + x2
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c8(x1)) = x1
POL(cons(x1, x2)) = [1] + x2
POL(eq(x1, x2)) = x1 + x2
POL(false) = [1]
POL(ifmem(x1, x2, x3)) = 0
POL(mem(x1, x2)) = 0
POL(nil) = 0
POL(s(x1)) = [1] + x1
POL(true) = [1]
Tuples:
mem(z0, cons(z1, z2)) → ifmem(eq(z0, z1), z0, z2)
mem(z0, nil) → false
ifmem(false, z0, z1) → mem(z0, z1)
ifmem(true, z0, z1) → true
eq(0, s(z0)) → false
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
eq(0, 0) → true
S tuples:
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
K tuples:
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
Defined Rule Symbols:
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
mem, ifmem, eq
INTER, MEM, EQ, IFMEM, IFINTER, APP
c, c1, c4, c8, c10, c12, c13, c14
We considered the (Usable) Rules:none
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
The order we found is given by the following interpretation:
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
POL(0) = [2]
POL(APP(x1, x2)) = 0
POL(EQ(x1, x2)) = 0
POL(IFINTER(x1, x2, x3, x4)) = [2]x3 + [2]x4
POL(IFMEM(x1, x2, x3)) = [3]
POL(INTER(x1, x2)) = [2]x1 + [2]x2
POL(MEM(x1, x2)) = [3]
POL(c(x1, x2)) = x1 + x2
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c8(x1)) = x1
POL(cons(x1, x2)) = [2] + x2
POL(eq(x1, x2)) = [2]x1
POL(false) = 0
POL(ifmem(x1, x2, x3)) = 0
POL(mem(x1, x2)) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(true) = [1]
Tuples:
mem(z0, cons(z1, z2)) → ifmem(eq(z0, z1), z0, z2)
mem(z0, nil) → false
ifmem(false, z0, z1) → mem(z0, z1)
ifmem(true, z0, z1) → true
eq(0, s(z0)) → false
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
eq(0, 0) → true
S tuples:
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
K tuples:
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
Defined Rule Symbols:
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
mem, ifmem, eq
INTER, MEM, EQ, IFMEM, IFINTER, APP
c, c1, c4, c8, c10, c12, c13, c14
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
Tuples:
mem(z0, cons(z1, z2)) → ifmem(eq(z0, z1), z0, z2)
mem(z0, nil) → false
ifmem(false, z0, z1) → mem(z0, z1)
ifmem(true, z0, z1) → true
eq(0, s(z0)) → false
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
eq(0, 0) → true
S tuples:
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
K tuples:
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
Defined Rule Symbols:
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
mem, ifmem, eq
INTER, MEM, EQ, IFMEM, IFINTER, APP
c, c1, c4, c8, c10, c12, c13, c14
We considered the (Usable) Rules:none
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
The order we found is given by the following interpretation:
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
POL(0) = [1]
POL(APP(x1, x2)) = [2]x1·x2 + x12
POL(EQ(x1, x2)) = [1]
POL(IFINTER(x1, x2, x3, x4)) = [2]x4 + [2]x3·x4
POL(IFMEM(x1, x2, x3)) = [2]x3
POL(INTER(x1, x2)) = [2]x1·x2
POL(MEM(x1, x2)) = [2]x2
POL(c(x1, x2)) = x1 + x2
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c8(x1)) = x1
POL(cons(x1, x2)) = [2] + x2
POL(eq(x1, x2)) = [2]x1
POL(false) = 0
POL(ifmem(x1, x2, x3)) = [2]x2 + x3 + [2]x32 + x2·x3 + x1·x3 + [2]x12 + x22
POL(mem(x1, x2)) = [1] + x1·x2 + [2]x12
POL(nil) = 0
POL(s(x1)) = [1]
POL(true) = [1]
Tuples:
mem(z0, cons(z1, z2)) → ifmem(eq(z0, z1), z0, z2)
mem(z0, nil) → false
ifmem(false, z0, z1) → mem(z0, z1)
ifmem(true, z0, z1) → true
eq(0, s(z0)) → false
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
eq(0, 0) → true
S tuples:
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
K tuples:
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
Defined Rule Symbols:
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
mem, ifmem, eq
INTER, MEM, EQ, IFMEM, IFINTER, APP
c, c1, c4, c8, c10, c12, c13, c14
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
Tuples:
mem(z0, cons(z1, z2)) → ifmem(eq(z0, z1), z0, z2)
mem(z0, nil) → false
ifmem(false, z0, z1) → mem(z0, z1)
ifmem(true, z0, z1) → true
eq(0, s(z0)) → false
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
eq(0, 0) → true
S tuples:
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
K tuples:
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
Defined Rule Symbols:
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
mem, ifmem, eq
INTER, MEM, EQ, IFMEM, IFINTER, APP
c, c1, c4, c8, c10, c12, c13, c14
We considered the (Usable) Rules:none
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
The order we found is given by the following interpretation:
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
POL(0) = [1]
POL(APP(x1, x2)) = [2]x1 + [2]x1·x2 + x12
POL(EQ(x1, x2)) = x1
POL(IFINTER(x1, x2, x3, x4)) = [2] + [2]x3 + [2]x4 + [2]x3·x4
POL(IFMEM(x1, x2, x3)) = [1] + [2]x3 + x2·x3
POL(INTER(x1, x2)) = [2] + [2]x1 + [2]x2 + [2]x1·x2
POL(MEM(x1, x2)) = [2]x2 + x1·x2
POL(c(x1, x2)) = x1 + x2
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c8(x1)) = x1
POL(cons(x1, x2)) = [1] + x1 + x2
POL(eq(x1, x2)) = 0
POL(false) = 0
POL(ifmem(x1, x2, x3)) = [1] + x1 + [2]x2 + x3 + x32 + x2·x3 + x1·x3 + [2]x12 + [2]x22
POL(mem(x1, x2)) = x1 + [2]x1·x2
POL(nil) = 0
POL(s(x1)) = [2] + x1
POL(true) = [1]
Tuples:
mem(z0, cons(z1, z2)) → ifmem(eq(z0, z1), z0, z2)
mem(z0, nil) → false
ifmem(false, z0, z1) → mem(z0, z1)
ifmem(true, z0, z1) → true
eq(0, s(z0)) → false
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
eq(0, 0) → true
S tuples:none
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
Defined Rule Symbols:
APP(cons(z0, z1), z2) → c14(APP(z1, z2))
INTER(cons(z0, z1), z2) → c(IFINTER(mem(z0, z2), z0, z1, z2), MEM(z0, z2))
INTER(z0, cons(z1, z2)) → c1(IFINTER(mem(z1, z0), z1, z2, z0), MEM(z1, z0))
IFINTER(true, z0, z1, z2) → c12(INTER(z1, z2))
IFINTER(false, z0, z1, z2) → c13(INTER(z1, z2))
MEM(z0, cons(z1, z2)) → c4(IFMEM(eq(z0, z1), z0, z2), EQ(z0, z1))
IFMEM(false, z0, z1) → c10(MEM(z0, z1))
EQ(s(z0), s(z1)) → c8(EQ(z0, z1))
mem, ifmem, eq
INTER, MEM, EQ, IFMEM, IFINTER, APP
c, c1, c4, c8, c10, c12, c13, c14