(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(0, x) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
mod(x, 0) → 0
mod(x, s(y)) → if(lt(x, s(y)), x, s(y))
if(true, x, y) → x
if(false, x, y) → mod(minus(x, y), y)
gcd(x, 0) → x
gcd(0, s(y)) → s(y)
gcd(s(x), s(y)) → gcd(mod(s(x), s(y)), mod(s(y), s(x)))
lt(x, 0) → false
lt(0, s(x)) → true
lt(s(x), s(y)) → lt(x, y)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
minus(s(x), s(y)) →+ minus(x, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(0', x) → 0'
minus(s(x), 0') → s(x)
minus(s(x), s(y)) → minus(x, y)
mod(x, 0') → 0'
mod(x, s(y)) → if(lt(x, s(y)), x, s(y))
if(true, x, y) → x
if(false, x, y) → mod(minus(x, y), y)
gcd(x, 0') → x
gcd(0', s(y)) → s(y)
gcd(s(x), s(y)) → gcd(mod(s(x), s(y)), mod(s(y), s(x)))
lt(x, 0') → false
lt(0', s(x)) → true
lt(s(x), s(y)) → lt(x, y)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
minus(0', x) → 0'
minus(s(x), 0') → s(x)
minus(s(x), s(y)) → minus(x, y)
mod(x, 0') → 0'
mod(x, s(y)) → if(lt(x, s(y)), x, s(y))
if(true, x, y) → x
if(false, x, y) → mod(minus(x, y), y)
gcd(x, 0') → x
gcd(0', s(y)) → s(y)
gcd(s(x), s(y)) → gcd(mod(s(x), s(y)), mod(s(y), s(x)))
lt(x, 0') → false
lt(0', s(x)) → true
lt(s(x), s(y)) → lt(x, y)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
mod :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
mod,
lt,
gcdThey will be analysed ascendingly in the following order:
minus < mod
lt < mod
mod < gcd
(8) Obligation:
TRS:
Rules:
minus(
0',
x) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
mod(
x,
0') →
0'mod(
x,
s(
y)) →
if(
lt(
x,
s(
y)),
x,
s(
y))
if(
true,
x,
y) →
xif(
false,
x,
y) →
mod(
minus(
x,
y),
y)
gcd(
x,
0') →
xgcd(
0',
s(
y)) →
s(
y)
gcd(
s(
x),
s(
y)) →
gcd(
mod(
s(
x),
s(
y)),
mod(
s(
y),
s(
x)))
lt(
x,
0') →
falselt(
0',
s(
x)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
mod :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
minus, mod, lt, gcd
They will be analysed ascendingly in the following order:
minus < mod
lt < mod
mod < gcd
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n5
0)
Induction Base:
minus(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
minus(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
minus(
0',
x) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
mod(
x,
0') →
0'mod(
x,
s(
y)) →
if(
lt(
x,
s(
y)),
x,
s(
y))
if(
true,
x,
y) →
xif(
false,
x,
y) →
mod(
minus(
x,
y),
y)
gcd(
x,
0') →
xgcd(
0',
s(
y)) →
s(
y)
gcd(
s(
x),
s(
y)) →
gcd(
mod(
s(
x),
s(
y)),
mod(
s(
y),
s(
x)))
lt(
x,
0') →
falselt(
0',
s(
x)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
mod :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
lt, mod, gcd
They will be analysed ascendingly in the following order:
lt < mod
mod < gcd
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
lt(
gen_0':s3_0(
n428_0),
gen_0':s3_0(
n428_0)) →
false, rt ∈ Ω(1 + n428
0)
Induction Base:
lt(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
false
Induction Step:
lt(gen_0':s3_0(+(n428_0, 1)), gen_0':s3_0(+(n428_0, 1))) →RΩ(1)
lt(gen_0':s3_0(n428_0), gen_0':s3_0(n428_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
minus(
0',
x) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
mod(
x,
0') →
0'mod(
x,
s(
y)) →
if(
lt(
x,
s(
y)),
x,
s(
y))
if(
true,
x,
y) →
xif(
false,
x,
y) →
mod(
minus(
x,
y),
y)
gcd(
x,
0') →
xgcd(
0',
s(
y)) →
s(
y)
gcd(
s(
x),
s(
y)) →
gcd(
mod(
s(
x),
s(
y)),
mod(
s(
y),
s(
x)))
lt(
x,
0') →
falselt(
0',
s(
x)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
mod :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
lt(gen_0':s3_0(n428_0), gen_0':s3_0(n428_0)) → false, rt ∈ Ω(1 + n4280)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
mod, gcd
They will be analysed ascendingly in the following order:
mod < gcd
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol mod.
(16) Obligation:
TRS:
Rules:
minus(
0',
x) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
mod(
x,
0') →
0'mod(
x,
s(
y)) →
if(
lt(
x,
s(
y)),
x,
s(
y))
if(
true,
x,
y) →
xif(
false,
x,
y) →
mod(
minus(
x,
y),
y)
gcd(
x,
0') →
xgcd(
0',
s(
y)) →
s(
y)
gcd(
s(
x),
s(
y)) →
gcd(
mod(
s(
x),
s(
y)),
mod(
s(
y),
s(
x)))
lt(
x,
0') →
falselt(
0',
s(
x)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
mod :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
lt(gen_0':s3_0(n428_0), gen_0':s3_0(n428_0)) → false, rt ∈ Ω(1 + n4280)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
gcd
(17) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol gcd.
(18) Obligation:
TRS:
Rules:
minus(
0',
x) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
mod(
x,
0') →
0'mod(
x,
s(
y)) →
if(
lt(
x,
s(
y)),
x,
s(
y))
if(
true,
x,
y) →
xif(
false,
x,
y) →
mod(
minus(
x,
y),
y)
gcd(
x,
0') →
xgcd(
0',
s(
y)) →
s(
y)
gcd(
s(
x),
s(
y)) →
gcd(
mod(
s(
x),
s(
y)),
mod(
s(
y),
s(
x)))
lt(
x,
0') →
falselt(
0',
s(
x)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
mod :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
lt(gen_0':s3_0(n428_0), gen_0':s3_0(n428_0)) → false, rt ∈ Ω(1 + n4280)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(20) BOUNDS(n^1, INF)
(21) Obligation:
TRS:
Rules:
minus(
0',
x) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
mod(
x,
0') →
0'mod(
x,
s(
y)) →
if(
lt(
x,
s(
y)),
x,
s(
y))
if(
true,
x,
y) →
xif(
false,
x,
y) →
mod(
minus(
x,
y),
y)
gcd(
x,
0') →
xgcd(
0',
s(
y)) →
s(
y)
gcd(
s(
x),
s(
y)) →
gcd(
mod(
s(
x),
s(
y)),
mod(
s(
y),
s(
x)))
lt(
x,
0') →
falselt(
0',
s(
x)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
mod :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
lt(gen_0':s3_0(n428_0), gen_0':s3_0(n428_0)) → false, rt ∈ Ω(1 + n4280)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(23) BOUNDS(n^1, INF)
(24) Obligation:
TRS:
Rules:
minus(
0',
x) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
mod(
x,
0') →
0'mod(
x,
s(
y)) →
if(
lt(
x,
s(
y)),
x,
s(
y))
if(
true,
x,
y) →
xif(
false,
x,
y) →
mod(
minus(
x,
y),
y)
gcd(
x,
0') →
xgcd(
0',
s(
y)) →
s(
y)
gcd(
s(
x),
s(
y)) →
gcd(
mod(
s(
x),
s(
y)),
mod(
s(
y),
s(
x)))
lt(
x,
0') →
falselt(
0',
s(
x)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
mod :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
lt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(26) BOUNDS(n^1, INF)