### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

max(nil) → 0
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0, 0) → true
ge(s(x), 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))

Rewrite Strategy: FULL

### (1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
max(cons(0, cons(0, xs))) →+ max(cons(0, xs))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [xs / cons(0, xs)].
The result substitution is [ ].

### (3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

### (4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

max(nil) → 0'
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0', 0') → true
eq(0', s(y)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0', 0') → true
ge(s(x), 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))

S is empty.
Rewrite Strategy: FULL

Infered types.

### (6) Obligation:

TRS:
Rules:
max(nil) → 0'
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0', 0') → true
eq(0', s(y)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0', 0') → true
ge(s(x), 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))

Types:
max :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: 0':s → nil:cons → nil:cons
if1 :: true:false → 0':s → 0':s → nil:cons → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
del :: 0':s → nil:cons → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
sort :: nil:cons → nil:cons
h :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

### (7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
max, ge, del, eq, sort, h

They will be analysed ascendingly in the following order:
ge < max
max < sort
eq < del
del < sort
h < sort

### (8) Obligation:

TRS:
Rules:
max(nil) → 0'
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0', 0') → true
eq(0', s(y)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0', 0') → true
ge(s(x), 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))

Types:
max :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: 0':s → nil:cons → nil:cons
if1 :: true:false → 0':s → 0':s → nil:cons → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
del :: 0':s → nil:cons → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
sort :: nil:cons → nil:cons
h :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))

The following defined symbols remain to be analysed:
ge, max, del, eq, sort, h

They will be analysed ascendingly in the following order:
ge < max
max < sort
eq < del
del < sort
h < sort

### (9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

Induction Base:
ge(gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
true

Induction Step:
ge(gen_0':s4_0(+(n7_0, 1)), gen_0':s4_0(+(n7_0, 1))) →RΩ(1)
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (11) Obligation:

TRS:
Rules:
max(nil) → 0'
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0', 0') → true
eq(0', s(y)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0', 0') → true
ge(s(x), 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))

Types:
max :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: 0':s → nil:cons → nil:cons
if1 :: true:false → 0':s → 0':s → nil:cons → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
del :: 0':s → nil:cons → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
sort :: nil:cons → nil:cons
h :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))

The following defined symbols remain to be analysed:
max, del, eq, sort, h

They will be analysed ascendingly in the following order:
max < sort
eq < del
del < sort
h < sort

### (12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
max(gen_nil:cons5_0(+(1, n582_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n5820)

Induction Base:
max(gen_nil:cons5_0(+(1, 0))) →RΩ(1)
0'

Induction Step:
max(gen_nil:cons5_0(+(1, +(n582_0, 1)))) →RΩ(1)
if1(ge(0', 0'), 0', 0', gen_nil:cons5_0(n582_0)) →LΩ(1)
if1(true, 0', 0', gen_nil:cons5_0(n582_0)) →RΩ(1)
max(cons(0', gen_nil:cons5_0(n582_0))) →IH
gen_0':s4_0(0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (14) Obligation:

TRS:
Rules:
max(nil) → 0'
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0', 0') → true
eq(0', s(y)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0', 0') → true
ge(s(x), 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))

Types:
max :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: 0':s → nil:cons → nil:cons
if1 :: true:false → 0':s → 0':s → nil:cons → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
del :: 0':s → nil:cons → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
sort :: nil:cons → nil:cons
h :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
max(gen_nil:cons5_0(+(1, n582_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n5820)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))

The following defined symbols remain to be analysed:
eq, del, sort, h

They will be analysed ascendingly in the following order:
eq < del
del < sort
h < sort

### (15) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
eq(gen_0':s4_0(n1031_0), gen_0':s4_0(n1031_0)) → true, rt ∈ Ω(1 + n10310)

Induction Base:
eq(gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
true

Induction Step:
eq(gen_0':s4_0(+(n1031_0, 1)), gen_0':s4_0(+(n1031_0, 1))) →RΩ(1)
eq(gen_0':s4_0(n1031_0), gen_0':s4_0(n1031_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (17) Obligation:

TRS:
Rules:
max(nil) → 0'
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0', 0') → true
eq(0', s(y)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0', 0') → true
ge(s(x), 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))

Types:
max :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: 0':s → nil:cons → nil:cons
if1 :: true:false → 0':s → 0':s → nil:cons → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
del :: 0':s → nil:cons → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
sort :: nil:cons → nil:cons
h :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
max(gen_nil:cons5_0(+(1, n582_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n5820)
eq(gen_0':s4_0(n1031_0), gen_0':s4_0(n1031_0)) → true, rt ∈ Ω(1 + n10310)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))

The following defined symbols remain to be analysed:
del, sort, h

They will be analysed ascendingly in the following order:
del < sort
h < sort

### (18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol del.

### (19) Obligation:

TRS:
Rules:
max(nil) → 0'
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0', 0') → true
eq(0', s(y)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0', 0') → true
ge(s(x), 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))

Types:
max :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: 0':s → nil:cons → nil:cons
if1 :: true:false → 0':s → 0':s → nil:cons → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
del :: 0':s → nil:cons → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
sort :: nil:cons → nil:cons
h :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
max(gen_nil:cons5_0(+(1, n582_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n5820)
eq(gen_0':s4_0(n1031_0), gen_0':s4_0(n1031_0)) → true, rt ∈ Ω(1 + n10310)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))

The following defined symbols remain to be analysed:
h, sort

They will be analysed ascendingly in the following order:
h < sort

### (20) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
h(gen_nil:cons5_0(n1780_0)) → gen_nil:cons5_0(n1780_0), rt ∈ Ω(1 + n17800)

Induction Base:
h(gen_nil:cons5_0(0)) →RΩ(1)
nil

Induction Step:
h(gen_nil:cons5_0(+(n1780_0, 1))) →RΩ(1)
cons(0', h(gen_nil:cons5_0(n1780_0))) →IH
cons(0', gen_nil:cons5_0(c1781_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (22) Obligation:

TRS:
Rules:
max(nil) → 0'
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0', 0') → true
eq(0', s(y)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0', 0') → true
ge(s(x), 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))

Types:
max :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: 0':s → nil:cons → nil:cons
if1 :: true:false → 0':s → 0':s → nil:cons → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
del :: 0':s → nil:cons → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
sort :: nil:cons → nil:cons
h :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
max(gen_nil:cons5_0(+(1, n582_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n5820)
eq(gen_0':s4_0(n1031_0), gen_0':s4_0(n1031_0)) → true, rt ∈ Ω(1 + n10310)
h(gen_nil:cons5_0(n1780_0)) → gen_nil:cons5_0(n1780_0), rt ∈ Ω(1 + n17800)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))

The following defined symbols remain to be analysed:
sort

### (23) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
sort(gen_nil:cons5_0(n2082_0)) → gen_nil:cons5_0(n2082_0), rt ∈ Ω(1 + n20820 + n208202)

Induction Base:
sort(gen_nil:cons5_0(0)) →RΩ(1)
nil

Induction Step:
sort(gen_nil:cons5_0(+(n2082_0, 1))) →RΩ(1)
cons(max(cons(0', gen_nil:cons5_0(n2082_0))), sort(h(del(max(cons(0', gen_nil:cons5_0(n2082_0))), cons(0', gen_nil:cons5_0(n2082_0)))))) →LΩ(1 + n20820)
cons(gen_0':s4_0(0), sort(h(del(max(cons(0', gen_nil:cons5_0(n2082_0))), cons(0', gen_nil:cons5_0(n2082_0)))))) →LΩ(1 + n20820)
cons(gen_0':s4_0(0), sort(h(del(gen_0':s4_0(0), cons(0', gen_nil:cons5_0(n2082_0)))))) →RΩ(1)
cons(gen_0':s4_0(0), sort(h(if2(eq(gen_0':s4_0(0), 0'), gen_0':s4_0(0), 0', gen_nil:cons5_0(n2082_0))))) →LΩ(1)
cons(gen_0':s4_0(0), sort(h(if2(true, gen_0':s4_0(0), 0', gen_nil:cons5_0(n2082_0))))) →RΩ(1)
cons(gen_0':s4_0(0), sort(h(gen_nil:cons5_0(n2082_0)))) →LΩ(1 + n20820)
cons(gen_0':s4_0(0), sort(gen_nil:cons5_0(n2082_0))) →IH
cons(gen_0':s4_0(0), gen_nil:cons5_0(c2083_0))

We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).

### (25) Obligation:

TRS:
Rules:
max(nil) → 0'
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0', 0') → true
eq(0', s(y)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0', 0') → true
ge(s(x), 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))

Types:
max :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: 0':s → nil:cons → nil:cons
if1 :: true:false → 0':s → 0':s → nil:cons → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
del :: 0':s → nil:cons → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
sort :: nil:cons → nil:cons
h :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
max(gen_nil:cons5_0(+(1, n582_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n5820)
eq(gen_0':s4_0(n1031_0), gen_0':s4_0(n1031_0)) → true, rt ∈ Ω(1 + n10310)
h(gen_nil:cons5_0(n1780_0)) → gen_nil:cons5_0(n1780_0), rt ∈ Ω(1 + n17800)
sort(gen_nil:cons5_0(n2082_0)) → gen_nil:cons5_0(n2082_0), rt ∈ Ω(1 + n20820 + n208202)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))

No more defined symbols left to analyse.

### (26) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
sort(gen_nil:cons5_0(n2082_0)) → gen_nil:cons5_0(n2082_0), rt ∈ Ω(1 + n20820 + n208202)

### (28) Obligation:

TRS:
Rules:
max(nil) → 0'
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0', 0') → true
eq(0', s(y)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0', 0') → true
ge(s(x), 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))

Types:
max :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: 0':s → nil:cons → nil:cons
if1 :: true:false → 0':s → 0':s → nil:cons → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
del :: 0':s → nil:cons → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
sort :: nil:cons → nil:cons
h :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
max(gen_nil:cons5_0(+(1, n582_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n5820)
eq(gen_0':s4_0(n1031_0), gen_0':s4_0(n1031_0)) → true, rt ∈ Ω(1 + n10310)
h(gen_nil:cons5_0(n1780_0)) → gen_nil:cons5_0(n1780_0), rt ∈ Ω(1 + n17800)
sort(gen_nil:cons5_0(n2082_0)) → gen_nil:cons5_0(n2082_0), rt ∈ Ω(1 + n20820 + n208202)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))

No more defined symbols left to analyse.

### (29) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
sort(gen_nil:cons5_0(n2082_0)) → gen_nil:cons5_0(n2082_0), rt ∈ Ω(1 + n20820 + n208202)

### (31) Obligation:

TRS:
Rules:
max(nil) → 0'
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0', 0') → true
eq(0', s(y)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0', 0') → true
ge(s(x), 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))

Types:
max :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: 0':s → nil:cons → nil:cons
if1 :: true:false → 0':s → 0':s → nil:cons → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
del :: 0':s → nil:cons → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
sort :: nil:cons → nil:cons
h :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
max(gen_nil:cons5_0(+(1, n582_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n5820)
eq(gen_0':s4_0(n1031_0), gen_0':s4_0(n1031_0)) → true, rt ∈ Ω(1 + n10310)
h(gen_nil:cons5_0(n1780_0)) → gen_nil:cons5_0(n1780_0), rt ∈ Ω(1 + n17800)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))

No more defined symbols left to analyse.

### (32) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

### (34) Obligation:

TRS:
Rules:
max(nil) → 0'
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0', 0') → true
eq(0', s(y)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0', 0') → true
ge(s(x), 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))

Types:
max :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: 0':s → nil:cons → nil:cons
if1 :: true:false → 0':s → 0':s → nil:cons → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
del :: 0':s → nil:cons → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
sort :: nil:cons → nil:cons
h :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
max(gen_nil:cons5_0(+(1, n582_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n5820)
eq(gen_0':s4_0(n1031_0), gen_0':s4_0(n1031_0)) → true, rt ∈ Ω(1 + n10310)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))

No more defined symbols left to analyse.

### (35) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

### (37) Obligation:

TRS:
Rules:
max(nil) → 0'
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0', 0') → true
eq(0', s(y)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0', 0') → true
ge(s(x), 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))

Types:
max :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: 0':s → nil:cons → nil:cons
if1 :: true:false → 0':s → 0':s → nil:cons → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
del :: 0':s → nil:cons → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
sort :: nil:cons → nil:cons
h :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
max(gen_nil:cons5_0(+(1, n582_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n5820)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))

No more defined symbols left to analyse.

### (38) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

### (40) Obligation:

TRS:
Rules:
max(nil) → 0'
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0', 0') → true
eq(0', s(y)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0', 0') → true
ge(s(x), 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))

Types:
max :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: 0':s → nil:cons → nil:cons
if1 :: true:false → 0':s → 0':s → nil:cons → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
del :: 0':s → nil:cons → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
sort :: nil:cons → nil:cons
h :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))

No more defined symbols left to analyse.

### (41) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)