### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
min(nil) → 0
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
tail(nil) → nil
null(nil) → true
rm(n, nil) → nil
if_rm(true, n, add(m, x)) → rm(n, x)
minsort(nil, nil) → nil

Rewrite Strategy: FULL

### (1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
eq(s(x), s(y)) →+ eq(x, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].

### (3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

### (4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
min(nil) → 0'
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
tail(nil) → nil
null(nil) → true
rm(n, nil) → nil
if_rm(true, n, add(m, x)) → rm(n, x)
minsort(nil, nil) → nil

S is empty.
Rewrite Strategy: FULL

Infered types.

### (6) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
min(nil) → 0'
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
tail(nil) → nil
null(nil) → true
rm(n, nil) → nil
if_rm(true, n, add(m, x)) → rm(n, x)
minsort(nil, nil) → nil

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s

### (7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
eq, le, app, minIter, rm, minsort

They will be analysed ascendingly in the following order:
eq < rm
eq < minsort
le < minIter
app < minsort
rm < minsort

### (8) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
min(nil) → 0'
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
tail(nil) → nil
null(nil) → true
rm(n, nil) → nil
if_rm(true, n, add(m, x)) → rm(n, x)
minsort(nil, nil) → nil

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))

The following defined symbols remain to be analysed:
eq, le, app, minIter, rm, minsort

They will be analysed ascendingly in the following order:
eq < rm
eq < minsort
le < minIter
app < minsort
rm < minsort

### (9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

Induction Base:
eq(gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
true

Induction Step:
eq(gen_0':s4_0(+(n7_0, 1)), gen_0':s4_0(+(n7_0, 1))) →RΩ(1)
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (11) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
min(nil) → 0'
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
tail(nil) → nil
null(nil) → true
rm(n, nil) → nil
if_rm(true, n, add(m, x)) → rm(n, x)
minsort(nil, nil) → nil

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))

The following defined symbols remain to be analysed:
le, app, minIter, rm, minsort

They will be analysed ascendingly in the following order:
le < minIter
app < minsort
rm < minsort

### (12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
le(gen_0':s4_0(n624_0), gen_0':s4_0(n624_0)) → true, rt ∈ Ω(1 + n6240)

Induction Base:
le(gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
true

Induction Step:
le(gen_0':s4_0(+(n624_0, 1)), gen_0':s4_0(+(n624_0, 1))) →RΩ(1)
le(gen_0':s4_0(n624_0), gen_0':s4_0(n624_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (14) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
min(nil) → 0'
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
tail(nil) → nil
null(nil) → true
rm(n, nil) → nil
if_rm(true, n, add(m, x)) → rm(n, x)
minsort(nil, nil) → nil

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
le(gen_0':s4_0(n624_0), gen_0':s4_0(n624_0)) → true, rt ∈ Ω(1 + n6240)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))

The following defined symbols remain to be analysed:
app, minIter, rm, minsort

They will be analysed ascendingly in the following order:
app < minsort
rm < minsort

### (15) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:

Induction Base:

Induction Step:

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (17) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
min(nil) → 0'
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
tail(nil) → nil
null(nil) → true
rm(n, nil) → nil
if_rm(true, n, add(m, x)) → rm(n, x)
minsort(nil, nil) → nil

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
le(gen_0':s4_0(n624_0), gen_0':s4_0(n624_0)) → true, rt ∈ Ω(1 + n6240)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))

The following defined symbols remain to be analysed:
minIter, rm, minsort

They will be analysed ascendingly in the following order:
rm < minsort

### (18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol minIter.

### (19) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
min(nil) → 0'
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
tail(nil) → nil
null(nil) → true
rm(n, nil) → nil
if_rm(true, n, add(m, x)) → rm(n, x)
minsort(nil, nil) → nil

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
le(gen_0':s4_0(n624_0), gen_0':s4_0(n624_0)) → true, rt ∈ Ω(1 + n6240)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))

The following defined symbols remain to be analysed:
rm, minsort

They will be analysed ascendingly in the following order:
rm < minsort

### (20) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:

Induction Base:
nil

Induction Step:

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (22) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
min(nil) → 0'
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
tail(nil) → nil
null(nil) → true
rm(n, nil) → nil
if_rm(true, n, add(m, x)) → rm(n, x)
minsort(nil, nil) → nil

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
le(gen_0':s4_0(n624_0), gen_0':s4_0(n624_0)) → true, rt ∈ Ω(1 + n6240)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))

The following defined symbols remain to be analysed:
minsort

### (23) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol minsort.

### (24) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
min(nil) → 0'
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
tail(nil) → nil
null(nil) → true
rm(n, nil) → nil
if_rm(true, n, add(m, x)) → rm(n, x)
minsort(nil, nil) → nil

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
le(gen_0':s4_0(n624_0), gen_0':s4_0(n624_0)) → true, rt ∈ Ω(1 + n6240)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))

No more defined symbols left to analyse.

### (25) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

### (27) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
min(nil) → 0'
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
tail(nil) → nil
null(nil) → true
rm(n, nil) → nil
if_rm(true, n, add(m, x)) → rm(n, x)
minsort(nil, nil) → nil

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
le(gen_0':s4_0(n624_0), gen_0':s4_0(n624_0)) → true, rt ∈ Ω(1 + n6240)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))

No more defined symbols left to analyse.

### (28) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

### (30) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
min(nil) → 0'
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
tail(nil) → nil
null(nil) → true
rm(n, nil) → nil
if_rm(true, n, add(m, x)) → rm(n, x)
minsort(nil, nil) → nil

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
le(gen_0':s4_0(n624_0), gen_0':s4_0(n624_0)) → true, rt ∈ Ω(1 + n6240)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))

No more defined symbols left to analyse.

### (31) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

### (33) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
min(nil) → 0'
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
tail(nil) → nil
null(nil) → true
rm(n, nil) → nil
if_rm(true, n, add(m, x)) → rm(n, x)
minsort(nil, nil) → nil

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
le(gen_0':s4_0(n624_0), gen_0':s4_0(n624_0)) → true, rt ∈ Ω(1 + n6240)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))

No more defined symbols left to analyse.

### (34) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

### (36) Obligation:

TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
min(nil) → 0'
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
tail(nil) → nil
null(nil) → true
rm(n, nil) → nil
if_rm(true, n, add(m, x)) → rm(n, x)
minsort(nil, nil) → nil

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))