(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
id_inc(x) → x
id_inc(x) → s(x)
div(x, y) → if(ge(y, s(0)), ge(x, y), x, y)
if(false, b, x, y) → div_by_zero
if(true, false, x, y) → 0
if(true, true, x, y) → id_inc(div(minus(x, y), y))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
ge(s(x), s(y)) →+ ge(x, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0') → x
minus(0', y) → 0'
minus(s(x), s(y)) → minus(x, y)
id_inc(x) → x
id_inc(x) → s(x)
div(x, y) → if(ge(y, s(0')), ge(x, y), x, y)
if(false, b, x, y) → div_by_zero
if(true, false, x, y) → 0'
if(true, true, x, y) → id_inc(div(minus(x, y), y))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0') → x
minus(0', y) → 0'
minus(s(x), s(y)) → minus(x, y)
id_inc(x) → x
id_inc(x) → s(x)
div(x, y) → if(ge(y, s(0')), ge(x, y), x, y)
if(false, b, x, y) → div_by_zero
if(true, false, x, y) → 0'
if(true, true, x, y) → id_inc(div(minus(x, y), y))
Types:
ge :: 0':s:div_by_zero → 0':s:div_by_zero → true:false
0' :: 0':s:div_by_zero
true :: true:false
s :: 0':s:div_by_zero → 0':s:div_by_zero
false :: true:false
minus :: 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
id_inc :: 0':s:div_by_zero → 0':s:div_by_zero
div :: 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
if :: true:false → true:false → 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
div_by_zero :: 0':s:div_by_zero
hole_true:false1_0 :: true:false
hole_0':s:div_by_zero2_0 :: 0':s:div_by_zero
gen_0':s:div_by_zero3_0 :: Nat → 0':s:div_by_zero
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
ge,
minus,
divThey will be analysed ascendingly in the following order:
ge < div
minus < div
(8) Obligation:
TRS:
Rules:
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
minus(
x,
0') →
xminus(
0',
y) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
id_inc(
x) →
xid_inc(
x) →
s(
x)
div(
x,
y) →
if(
ge(
y,
s(
0')),
ge(
x,
y),
x,
y)
if(
false,
b,
x,
y) →
div_by_zeroif(
true,
false,
x,
y) →
0'if(
true,
true,
x,
y) →
id_inc(
div(
minus(
x,
y),
y))
Types:
ge :: 0':s:div_by_zero → 0':s:div_by_zero → true:false
0' :: 0':s:div_by_zero
true :: true:false
s :: 0':s:div_by_zero → 0':s:div_by_zero
false :: true:false
minus :: 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
id_inc :: 0':s:div_by_zero → 0':s:div_by_zero
div :: 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
if :: true:false → true:false → 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
div_by_zero :: 0':s:div_by_zero
hole_true:false1_0 :: true:false
hole_0':s:div_by_zero2_0 :: 0':s:div_by_zero
gen_0':s:div_by_zero3_0 :: Nat → 0':s:div_by_zero
Generator Equations:
gen_0':s:div_by_zero3_0(0) ⇔ 0'
gen_0':s:div_by_zero3_0(+(x, 1)) ⇔ s(gen_0':s:div_by_zero3_0(x))
The following defined symbols remain to be analysed:
ge, minus, div
They will be analysed ascendingly in the following order:
ge < div
minus < div
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
ge(
gen_0':s:div_by_zero3_0(
n5_0),
gen_0':s:div_by_zero3_0(
n5_0)) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
ge(gen_0':s:div_by_zero3_0(0), gen_0':s:div_by_zero3_0(0)) →RΩ(1)
true
Induction Step:
ge(gen_0':s:div_by_zero3_0(+(n5_0, 1)), gen_0':s:div_by_zero3_0(+(n5_0, 1))) →RΩ(1)
ge(gen_0':s:div_by_zero3_0(n5_0), gen_0':s:div_by_zero3_0(n5_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
minus(
x,
0') →
xminus(
0',
y) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
id_inc(
x) →
xid_inc(
x) →
s(
x)
div(
x,
y) →
if(
ge(
y,
s(
0')),
ge(
x,
y),
x,
y)
if(
false,
b,
x,
y) →
div_by_zeroif(
true,
false,
x,
y) →
0'if(
true,
true,
x,
y) →
id_inc(
div(
minus(
x,
y),
y))
Types:
ge :: 0':s:div_by_zero → 0':s:div_by_zero → true:false
0' :: 0':s:div_by_zero
true :: true:false
s :: 0':s:div_by_zero → 0':s:div_by_zero
false :: true:false
minus :: 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
id_inc :: 0':s:div_by_zero → 0':s:div_by_zero
div :: 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
if :: true:false → true:false → 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
div_by_zero :: 0':s:div_by_zero
hole_true:false1_0 :: true:false
hole_0':s:div_by_zero2_0 :: 0':s:div_by_zero
gen_0':s:div_by_zero3_0 :: Nat → 0':s:div_by_zero
Lemmas:
ge(gen_0':s:div_by_zero3_0(n5_0), gen_0':s:div_by_zero3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s:div_by_zero3_0(0) ⇔ 0'
gen_0':s:div_by_zero3_0(+(x, 1)) ⇔ s(gen_0':s:div_by_zero3_0(x))
The following defined symbols remain to be analysed:
minus, div
They will be analysed ascendingly in the following order:
minus < div
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_0':s:div_by_zero3_0(
n288_0),
gen_0':s:div_by_zero3_0(
n288_0)) →
gen_0':s:div_by_zero3_0(
0), rt ∈ Ω(1 + n288
0)
Induction Base:
minus(gen_0':s:div_by_zero3_0(0), gen_0':s:div_by_zero3_0(0)) →RΩ(1)
gen_0':s:div_by_zero3_0(0)
Induction Step:
minus(gen_0':s:div_by_zero3_0(+(n288_0, 1)), gen_0':s:div_by_zero3_0(+(n288_0, 1))) →RΩ(1)
minus(gen_0':s:div_by_zero3_0(n288_0), gen_0':s:div_by_zero3_0(n288_0)) →IH
gen_0':s:div_by_zero3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
minus(
x,
0') →
xminus(
0',
y) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
id_inc(
x) →
xid_inc(
x) →
s(
x)
div(
x,
y) →
if(
ge(
y,
s(
0')),
ge(
x,
y),
x,
y)
if(
false,
b,
x,
y) →
div_by_zeroif(
true,
false,
x,
y) →
0'if(
true,
true,
x,
y) →
id_inc(
div(
minus(
x,
y),
y))
Types:
ge :: 0':s:div_by_zero → 0':s:div_by_zero → true:false
0' :: 0':s:div_by_zero
true :: true:false
s :: 0':s:div_by_zero → 0':s:div_by_zero
false :: true:false
minus :: 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
id_inc :: 0':s:div_by_zero → 0':s:div_by_zero
div :: 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
if :: true:false → true:false → 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
div_by_zero :: 0':s:div_by_zero
hole_true:false1_0 :: true:false
hole_0':s:div_by_zero2_0 :: 0':s:div_by_zero
gen_0':s:div_by_zero3_0 :: Nat → 0':s:div_by_zero
Lemmas:
ge(gen_0':s:div_by_zero3_0(n5_0), gen_0':s:div_by_zero3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
minus(gen_0':s:div_by_zero3_0(n288_0), gen_0':s:div_by_zero3_0(n288_0)) → gen_0':s:div_by_zero3_0(0), rt ∈ Ω(1 + n2880)
Generator Equations:
gen_0':s:div_by_zero3_0(0) ⇔ 0'
gen_0':s:div_by_zero3_0(+(x, 1)) ⇔ s(gen_0':s:div_by_zero3_0(x))
The following defined symbols remain to be analysed:
div
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol div.
(16) Obligation:
TRS:
Rules:
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
minus(
x,
0') →
xminus(
0',
y) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
id_inc(
x) →
xid_inc(
x) →
s(
x)
div(
x,
y) →
if(
ge(
y,
s(
0')),
ge(
x,
y),
x,
y)
if(
false,
b,
x,
y) →
div_by_zeroif(
true,
false,
x,
y) →
0'if(
true,
true,
x,
y) →
id_inc(
div(
minus(
x,
y),
y))
Types:
ge :: 0':s:div_by_zero → 0':s:div_by_zero → true:false
0' :: 0':s:div_by_zero
true :: true:false
s :: 0':s:div_by_zero → 0':s:div_by_zero
false :: true:false
minus :: 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
id_inc :: 0':s:div_by_zero → 0':s:div_by_zero
div :: 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
if :: true:false → true:false → 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
div_by_zero :: 0':s:div_by_zero
hole_true:false1_0 :: true:false
hole_0':s:div_by_zero2_0 :: 0':s:div_by_zero
gen_0':s:div_by_zero3_0 :: Nat → 0':s:div_by_zero
Lemmas:
ge(gen_0':s:div_by_zero3_0(n5_0), gen_0':s:div_by_zero3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
minus(gen_0':s:div_by_zero3_0(n288_0), gen_0':s:div_by_zero3_0(n288_0)) → gen_0':s:div_by_zero3_0(0), rt ∈ Ω(1 + n2880)
Generator Equations:
gen_0':s:div_by_zero3_0(0) ⇔ 0'
gen_0':s:div_by_zero3_0(+(x, 1)) ⇔ s(gen_0':s:div_by_zero3_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_0':s:div_by_zero3_0(n5_0), gen_0':s:div_by_zero3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(18) BOUNDS(n^1, INF)
(19) Obligation:
TRS:
Rules:
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
minus(
x,
0') →
xminus(
0',
y) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
id_inc(
x) →
xid_inc(
x) →
s(
x)
div(
x,
y) →
if(
ge(
y,
s(
0')),
ge(
x,
y),
x,
y)
if(
false,
b,
x,
y) →
div_by_zeroif(
true,
false,
x,
y) →
0'if(
true,
true,
x,
y) →
id_inc(
div(
minus(
x,
y),
y))
Types:
ge :: 0':s:div_by_zero → 0':s:div_by_zero → true:false
0' :: 0':s:div_by_zero
true :: true:false
s :: 0':s:div_by_zero → 0':s:div_by_zero
false :: true:false
minus :: 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
id_inc :: 0':s:div_by_zero → 0':s:div_by_zero
div :: 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
if :: true:false → true:false → 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
div_by_zero :: 0':s:div_by_zero
hole_true:false1_0 :: true:false
hole_0':s:div_by_zero2_0 :: 0':s:div_by_zero
gen_0':s:div_by_zero3_0 :: Nat → 0':s:div_by_zero
Lemmas:
ge(gen_0':s:div_by_zero3_0(n5_0), gen_0':s:div_by_zero3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
minus(gen_0':s:div_by_zero3_0(n288_0), gen_0':s:div_by_zero3_0(n288_0)) → gen_0':s:div_by_zero3_0(0), rt ∈ Ω(1 + n2880)
Generator Equations:
gen_0':s:div_by_zero3_0(0) ⇔ 0'
gen_0':s:div_by_zero3_0(+(x, 1)) ⇔ s(gen_0':s:div_by_zero3_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_0':s:div_by_zero3_0(n5_0), gen_0':s:div_by_zero3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
minus(
x,
0') →
xminus(
0',
y) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
id_inc(
x) →
xid_inc(
x) →
s(
x)
div(
x,
y) →
if(
ge(
y,
s(
0')),
ge(
x,
y),
x,
y)
if(
false,
b,
x,
y) →
div_by_zeroif(
true,
false,
x,
y) →
0'if(
true,
true,
x,
y) →
id_inc(
div(
minus(
x,
y),
y))
Types:
ge :: 0':s:div_by_zero → 0':s:div_by_zero → true:false
0' :: 0':s:div_by_zero
true :: true:false
s :: 0':s:div_by_zero → 0':s:div_by_zero
false :: true:false
minus :: 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
id_inc :: 0':s:div_by_zero → 0':s:div_by_zero
div :: 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
if :: true:false → true:false → 0':s:div_by_zero → 0':s:div_by_zero → 0':s:div_by_zero
div_by_zero :: 0':s:div_by_zero
hole_true:false1_0 :: true:false
hole_0':s:div_by_zero2_0 :: 0':s:div_by_zero
gen_0':s:div_by_zero3_0 :: Nat → 0':s:div_by_zero
Lemmas:
ge(gen_0':s:div_by_zero3_0(n5_0), gen_0':s:div_by_zero3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s:div_by_zero3_0(0) ⇔ 0'
gen_0':s:div_by_zero3_0(+(x, 1)) ⇔ s(gen_0':s:div_by_zero3_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_0':s:div_by_zero3_0(n5_0), gen_0':s:div_by_zero3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(24) BOUNDS(n^1, INF)