### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, x, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, x, y) → cons(0, nil)
if1(false, x, y) → cons(0, int(s(0), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))

Rewrite Strategy: FULL

### (1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
p(s(s(x))) →+ s(p(s(x)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].

### (3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

### (4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, x, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, x, y) → cons(0', nil)
if1(false, x, y) → cons(0', int(s(0'), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))

S is empty.
Rewrite Strategy: FULL

### (5) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
if1/1

### (6) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, y) → cons(0', nil)
if1(false, y) → cons(0', int(s(0'), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))

S is empty.
Rewrite Strategy: FULL

Infered types.

### (8) Obligation:

TRS:
Rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, y) → cons(0', nil)
if1(false, y) → cons(0', int(s(0'), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))

Types:
empty :: nil:cons → true:false
nil :: nil:cons
true :: true:false
cons :: 0':s → nil:cons → nil:cons
false :: true:false
tail :: nil:cons → nil:cons
zero :: 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
intlist :: nil:cons → nil:cons
if_intlist :: true:false → nil:cons → nil:cons
int :: 0':s → 0':s → nil:cons
if_int :: true:false → true:false → 0':s → 0':s → nil:cons
if1 :: true:false → 0':s → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons
hole_true:false1_0 :: true:false
hole_nil:cons2_0 :: nil:cons
hole_0':s3_0 :: 0':s
gen_nil:cons4_0 :: Nat → nil:cons
gen_0':s5_0 :: Nat → 0':s

### (9) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
p, intlist, int, if1

They will be analysed ascendingly in the following order:
p < int
intlist < int
int = if1

### (10) Obligation:

TRS:
Rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, y) → cons(0', nil)
if1(false, y) → cons(0', int(s(0'), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))

Types:
empty :: nil:cons → true:false
nil :: nil:cons
true :: true:false
cons :: 0':s → nil:cons → nil:cons
false :: true:false
tail :: nil:cons → nil:cons
zero :: 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
intlist :: nil:cons → nil:cons
if_intlist :: true:false → nil:cons → nil:cons
int :: 0':s → 0':s → nil:cons
if_int :: true:false → true:false → 0':s → 0':s → nil:cons
if1 :: true:false → 0':s → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons
hole_true:false1_0 :: true:false
hole_nil:cons2_0 :: nil:cons
hole_0':s3_0 :: 0':s
gen_nil:cons4_0 :: Nat → nil:cons
gen_0':s5_0 :: Nat → 0':s

Generator Equations:
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))

The following defined symbols remain to be analysed:
p, intlist, int, if1

They will be analysed ascendingly in the following order:
p < int
intlist < int
int = if1

### (11) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)

Induction Base:
p(gen_0':s5_0(+(1, 0))) →RΩ(1)
0'

Induction Step:
p(gen_0':s5_0(+(1, +(n7_0, 1)))) →RΩ(1)
s(p(s(gen_0':s5_0(n7_0)))) →IH
s(gen_0':s5_0(c8_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (13) Obligation:

TRS:
Rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, y) → cons(0', nil)
if1(false, y) → cons(0', int(s(0'), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))

Types:
empty :: nil:cons → true:false
nil :: nil:cons
true :: true:false
cons :: 0':s → nil:cons → nil:cons
false :: true:false
tail :: nil:cons → nil:cons
zero :: 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
intlist :: nil:cons → nil:cons
if_intlist :: true:false → nil:cons → nil:cons
int :: 0':s → 0':s → nil:cons
if_int :: true:false → true:false → 0':s → 0':s → nil:cons
if1 :: true:false → 0':s → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons
hole_true:false1_0 :: true:false
hole_nil:cons2_0 :: nil:cons
hole_0':s3_0 :: 0':s
gen_nil:cons4_0 :: Nat → nil:cons
gen_0':s5_0 :: Nat → 0':s

Lemmas:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)

Generator Equations:
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))

The following defined symbols remain to be analysed:
intlist, int, if1

They will be analysed ascendingly in the following order:
intlist < int
int = if1

### (14) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
intlist(gen_nil:cons4_0(n312_0)) → *6_0, rt ∈ Ω(n3120)

Induction Base:
intlist(gen_nil:cons4_0(0))

Induction Step:
intlist(gen_nil:cons4_0(+(n312_0, 1))) →RΩ(1)
if_intlist(empty(gen_nil:cons4_0(+(n312_0, 1))), gen_nil:cons4_0(+(n312_0, 1))) →RΩ(1)
if_intlist(false, gen_nil:cons4_0(+(1, n312_0))) →RΩ(1)
cons(s(0'), intlist(tail(gen_nil:cons4_0(+(1, n312_0))))) →RΩ(1)
cons(s(0'), intlist(gen_nil:cons4_0(n312_0))) →IH
cons(s(0'), *6_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (16) Obligation:

TRS:
Rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, y) → cons(0', nil)
if1(false, y) → cons(0', int(s(0'), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))

Types:
empty :: nil:cons → true:false
nil :: nil:cons
true :: true:false
cons :: 0':s → nil:cons → nil:cons
false :: true:false
tail :: nil:cons → nil:cons
zero :: 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
intlist :: nil:cons → nil:cons
if_intlist :: true:false → nil:cons → nil:cons
int :: 0':s → 0':s → nil:cons
if_int :: true:false → true:false → 0':s → 0':s → nil:cons
if1 :: true:false → 0':s → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons
hole_true:false1_0 :: true:false
hole_nil:cons2_0 :: nil:cons
hole_0':s3_0 :: 0':s
gen_nil:cons4_0 :: Nat → nil:cons
gen_0':s5_0 :: Nat → 0':s

Lemmas:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
intlist(gen_nil:cons4_0(n312_0)) → *6_0, rt ∈ Ω(n3120)

Generator Equations:
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))

The following defined symbols remain to be analysed:
if1, int

They will be analysed ascendingly in the following order:
int = if1

### (17) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol if1.

### (18) Obligation:

TRS:
Rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, y) → cons(0', nil)
if1(false, y) → cons(0', int(s(0'), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))

Types:
empty :: nil:cons → true:false
nil :: nil:cons
true :: true:false
cons :: 0':s → nil:cons → nil:cons
false :: true:false
tail :: nil:cons → nil:cons
zero :: 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
intlist :: nil:cons → nil:cons
if_intlist :: true:false → nil:cons → nil:cons
int :: 0':s → 0':s → nil:cons
if_int :: true:false → true:false → 0':s → 0':s → nil:cons
if1 :: true:false → 0':s → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons
hole_true:false1_0 :: true:false
hole_nil:cons2_0 :: nil:cons
hole_0':s3_0 :: 0':s
gen_nil:cons4_0 :: Nat → nil:cons
gen_0':s5_0 :: Nat → 0':s

Lemmas:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
intlist(gen_nil:cons4_0(n312_0)) → *6_0, rt ∈ Ω(n3120)

Generator Equations:
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))

The following defined symbols remain to be analysed:
int

They will be analysed ascendingly in the following order:
int = if1

### (19) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
int(gen_0':s5_0(+(1, n37914_0)), gen_0':s5_0(n37914_0)) → gen_nil:cons4_0(0), rt ∈ Ω(1 + n379140 + n3791402)

Induction Base:
int(gen_0':s5_0(+(1, 0)), gen_0':s5_0(0)) →RΩ(1)
if_int(zero(gen_0':s5_0(+(1, 0))), zero(gen_0':s5_0(0)), gen_0':s5_0(+(1, 0)), gen_0':s5_0(0)) →RΩ(1)
if_int(false, zero(gen_0':s5_0(0)), gen_0':s5_0(1), gen_0':s5_0(0)) →RΩ(1)
if_int(false, true, gen_0':s5_0(1), gen_0':s5_0(0)) →RΩ(1)
if2(true, gen_0':s5_0(1), gen_0':s5_0(0)) →RΩ(1)
nil

Induction Step:
int(gen_0':s5_0(+(1, +(n37914_0, 1))), gen_0':s5_0(+(n37914_0, 1))) →RΩ(1)
if_int(zero(gen_0':s5_0(+(1, +(n37914_0, 1)))), zero(gen_0':s5_0(+(n37914_0, 1))), gen_0':s5_0(+(1, +(n37914_0, 1))), gen_0':s5_0(+(n37914_0, 1))) →RΩ(1)
if_int(false, zero(gen_0':s5_0(+(1, n37914_0))), gen_0':s5_0(+(2, n37914_0)), gen_0':s5_0(+(1, n37914_0))) →RΩ(1)
if_int(false, false, gen_0':s5_0(+(2, n37914_0)), gen_0':s5_0(+(1, n37914_0))) →RΩ(1)
if2(false, gen_0':s5_0(+(2, n37914_0)), gen_0':s5_0(+(1, n37914_0))) →RΩ(1)
intlist(int(p(gen_0':s5_0(+(2, n37914_0))), p(gen_0':s5_0(+(1, n37914_0))))) →LΩ(2 + n379140)
intlist(int(gen_0':s5_0(+(1, n37914_0)), p(gen_0':s5_0(+(1, n37914_0))))) →LΩ(1 + n379140)
intlist(int(gen_0':s5_0(+(1, n37914_0)), gen_0':s5_0(n37914_0))) →IH
intlist(gen_nil:cons4_0(0)) →RΩ(1)
if_intlist(empty(gen_nil:cons4_0(0)), gen_nil:cons4_0(0)) →RΩ(1)
if_intlist(true, gen_nil:cons4_0(0)) →RΩ(1)
nil

We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).

### (21) Obligation:

TRS:
Rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, y) → cons(0', nil)
if1(false, y) → cons(0', int(s(0'), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))

Types:
empty :: nil:cons → true:false
nil :: nil:cons
true :: true:false
cons :: 0':s → nil:cons → nil:cons
false :: true:false
tail :: nil:cons → nil:cons
zero :: 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
intlist :: nil:cons → nil:cons
if_intlist :: true:false → nil:cons → nil:cons
int :: 0':s → 0':s → nil:cons
if_int :: true:false → true:false → 0':s → 0':s → nil:cons
if1 :: true:false → 0':s → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons
hole_true:false1_0 :: true:false
hole_nil:cons2_0 :: nil:cons
hole_0':s3_0 :: 0':s
gen_nil:cons4_0 :: Nat → nil:cons
gen_0':s5_0 :: Nat → 0':s

Lemmas:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
intlist(gen_nil:cons4_0(n312_0)) → *6_0, rt ∈ Ω(n3120)
int(gen_0':s5_0(+(1, n37914_0)), gen_0':s5_0(n37914_0)) → gen_nil:cons4_0(0), rt ∈ Ω(1 + n379140 + n3791402)

Generator Equations:
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))

The following defined symbols remain to be analysed:
if1

They will be analysed ascendingly in the following order:
int = if1

### (22) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol if1.

### (23) Obligation:

TRS:
Rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, y) → cons(0', nil)
if1(false, y) → cons(0', int(s(0'), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))

Types:
empty :: nil:cons → true:false
nil :: nil:cons
true :: true:false
cons :: 0':s → nil:cons → nil:cons
false :: true:false
tail :: nil:cons → nil:cons
zero :: 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
intlist :: nil:cons → nil:cons
if_intlist :: true:false → nil:cons → nil:cons
int :: 0':s → 0':s → nil:cons
if_int :: true:false → true:false → 0':s → 0':s → nil:cons
if1 :: true:false → 0':s → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons
hole_true:false1_0 :: true:false
hole_nil:cons2_0 :: nil:cons
hole_0':s3_0 :: 0':s
gen_nil:cons4_0 :: Nat → nil:cons
gen_0':s5_0 :: Nat → 0':s

Lemmas:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
intlist(gen_nil:cons4_0(n312_0)) → *6_0, rt ∈ Ω(n3120)
int(gen_0':s5_0(+(1, n37914_0)), gen_0':s5_0(n37914_0)) → gen_nil:cons4_0(0), rt ∈ Ω(1 + n379140 + n3791402)

Generator Equations:
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))

No more defined symbols left to analyse.

### (24) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
int(gen_0':s5_0(+(1, n37914_0)), gen_0':s5_0(n37914_0)) → gen_nil:cons4_0(0), rt ∈ Ω(1 + n379140 + n3791402)

### (26) Obligation:

TRS:
Rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, y) → cons(0', nil)
if1(false, y) → cons(0', int(s(0'), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))

Types:
empty :: nil:cons → true:false
nil :: nil:cons
true :: true:false
cons :: 0':s → nil:cons → nil:cons
false :: true:false
tail :: nil:cons → nil:cons
zero :: 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
intlist :: nil:cons → nil:cons
if_intlist :: true:false → nil:cons → nil:cons
int :: 0':s → 0':s → nil:cons
if_int :: true:false → true:false → 0':s → 0':s → nil:cons
if1 :: true:false → 0':s → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons
hole_true:false1_0 :: true:false
hole_nil:cons2_0 :: nil:cons
hole_0':s3_0 :: 0':s
gen_nil:cons4_0 :: Nat → nil:cons
gen_0':s5_0 :: Nat → 0':s

Lemmas:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
intlist(gen_nil:cons4_0(n312_0)) → *6_0, rt ∈ Ω(n3120)
int(gen_0':s5_0(+(1, n37914_0)), gen_0':s5_0(n37914_0)) → gen_nil:cons4_0(0), rt ∈ Ω(1 + n379140 + n3791402)

Generator Equations:
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))

No more defined symbols left to analyse.

### (27) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
int(gen_0':s5_0(+(1, n37914_0)), gen_0':s5_0(n37914_0)) → gen_nil:cons4_0(0), rt ∈ Ω(1 + n379140 + n3791402)

### (29) Obligation:

TRS:
Rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, y) → cons(0', nil)
if1(false, y) → cons(0', int(s(0'), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))

Types:
empty :: nil:cons → true:false
nil :: nil:cons
true :: true:false
cons :: 0':s → nil:cons → nil:cons
false :: true:false
tail :: nil:cons → nil:cons
zero :: 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
intlist :: nil:cons → nil:cons
if_intlist :: true:false → nil:cons → nil:cons
int :: 0':s → 0':s → nil:cons
if_int :: true:false → true:false → 0':s → 0':s → nil:cons
if1 :: true:false → 0':s → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons
hole_true:false1_0 :: true:false
hole_nil:cons2_0 :: nil:cons
hole_0':s3_0 :: 0':s
gen_nil:cons4_0 :: Nat → nil:cons
gen_0':s5_0 :: Nat → 0':s

Lemmas:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
intlist(gen_nil:cons4_0(n312_0)) → *6_0, rt ∈ Ω(n3120)

Generator Equations:
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))

No more defined symbols left to analyse.

### (30) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)

### (32) Obligation:

TRS:
Rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, y) → cons(0', nil)
if1(false, y) → cons(0', int(s(0'), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))

Types:
empty :: nil:cons → true:false
nil :: nil:cons
true :: true:false
cons :: 0':s → nil:cons → nil:cons
false :: true:false
tail :: nil:cons → nil:cons
zero :: 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
intlist :: nil:cons → nil:cons
if_intlist :: true:false → nil:cons → nil:cons
int :: 0':s → 0':s → nil:cons
if_int :: true:false → true:false → 0':s → 0':s → nil:cons
if1 :: true:false → 0':s → nil:cons
if2 :: true:false → 0':s → 0':s → nil:cons
hole_true:false1_0 :: true:false
hole_nil:cons2_0 :: nil:cons
hole_0':s3_0 :: 0':s
gen_nil:cons4_0 :: Nat → nil:cons
gen_0':s5_0 :: Nat → 0':s

Lemmas:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)

Generator Equations:
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))

No more defined symbols left to analyse.

### (33) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
p(gen_0':s5_0(+(1, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)