(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
minus(x, 0) → x
minus(s(x), s(y)) → s(minus(x, any(y)))
gcd(s(x), s(y)) → gcd(minus(max(x, y), min(x, y)), s(min(x, y)))
any(s(x)) → s(s(any(x)))
any(x) → x
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
min(s(x), s(y)) →+ s(min(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
min(x, 0') → 0'
min(0', y) → 0'
min(s(x), s(y)) → s(min(x, y))
max(x, 0') → x
max(0', y) → y
max(s(x), s(y)) → s(max(x, y))
minus(x, 0') → x
minus(s(x), s(y)) → s(minus(x, any(y)))
gcd(s(x), s(y)) → gcd(minus(max(x, y), min(x, y)), s(min(x, y)))
any(s(x)) → s(s(any(x)))
any(x) → x
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
min(x, 0') → 0'
min(0', y) → 0'
min(s(x), s(y)) → s(min(x, y))
max(x, 0') → x
max(0', y) → y
max(s(x), s(y)) → s(max(x, y))
minus(x, 0') → x
minus(s(x), s(y)) → s(minus(x, any(y)))
gcd(s(x), s(y)) → gcd(minus(max(x, y), min(x, y)), s(min(x, y)))
any(s(x)) → s(s(any(x)))
any(x) → x
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
any :: 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
min,
max,
minus,
any,
gcdThey will be analysed ascendingly in the following order:
min < gcd
max < gcd
any < minus
minus < gcd
(8) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
any(
y)))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
y)),
s(
min(
x,
y)))
any(
s(
x)) →
s(
s(
any(
x)))
any(
x) →
xTypes:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
any :: 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
min, max, minus, any, gcd
They will be analysed ascendingly in the following order:
min < gcd
max < gcd
any < minus
minus < gcd
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
min(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
gen_0':s3_0(
n5_0), rt ∈ Ω(1 + n5
0)
Induction Base:
min(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
min(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
s(min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0))) →IH
s(gen_0':s3_0(c6_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
any(
y)))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
y)),
s(
min(
x,
y)))
any(
s(
x)) →
s(
s(
any(
x)))
any(
x) →
xTypes:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
any :: 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
max, minus, any, gcd
They will be analysed ascendingly in the following order:
max < gcd
any < minus
minus < gcd
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
max(
gen_0':s3_0(
n313_0),
gen_0':s3_0(
n313_0)) →
gen_0':s3_0(
n313_0), rt ∈ Ω(1 + n313
0)
Induction Base:
max(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
max(gen_0':s3_0(+(n313_0, 1)), gen_0':s3_0(+(n313_0, 1))) →RΩ(1)
s(max(gen_0':s3_0(n313_0), gen_0':s3_0(n313_0))) →IH
s(gen_0':s3_0(c314_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
any(
y)))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
y)),
s(
min(
x,
y)))
any(
s(
x)) →
s(
s(
any(
x)))
any(
x) →
xTypes:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
any :: 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n313_0), gen_0':s3_0(n313_0)) → gen_0':s3_0(n313_0), rt ∈ Ω(1 + n3130)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
any, minus, gcd
They will be analysed ascendingly in the following order:
any < minus
minus < gcd
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
any(
gen_0':s3_0(
+(
1,
n701_0))) →
*4_0, rt ∈ Ω(n701
0)
Induction Base:
any(gen_0':s3_0(+(1, 0)))
Induction Step:
any(gen_0':s3_0(+(1, +(n701_0, 1)))) →RΩ(1)
s(s(any(gen_0':s3_0(+(1, n701_0))))) →IH
s(s(*4_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
any(
y)))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
y)),
s(
min(
x,
y)))
any(
s(
x)) →
s(
s(
any(
x)))
any(
x) →
xTypes:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
any :: 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n313_0), gen_0':s3_0(n313_0)) → gen_0':s3_0(n313_0), rt ∈ Ω(1 + n3130)
any(gen_0':s3_0(+(1, n701_0))) → *4_0, rt ∈ Ω(n7010)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
minus, gcd
They will be analysed ascendingly in the following order:
minus < gcd
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol minus.
(19) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
any(
y)))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
y)),
s(
min(
x,
y)))
any(
s(
x)) →
s(
s(
any(
x)))
any(
x) →
xTypes:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
any :: 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n313_0), gen_0':s3_0(n313_0)) → gen_0':s3_0(n313_0), rt ∈ Ω(1 + n3130)
any(gen_0':s3_0(+(1, n701_0))) → *4_0, rt ∈ Ω(n7010)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
gcd
(20) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol gcd.
(21) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
any(
y)))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
y)),
s(
min(
x,
y)))
any(
s(
x)) →
s(
s(
any(
x)))
any(
x) →
xTypes:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
any :: 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n313_0), gen_0':s3_0(n313_0)) → gen_0':s3_0(n313_0), rt ∈ Ω(1 + n3130)
any(gen_0':s3_0(+(1, n701_0))) → *4_0, rt ∈ Ω(n7010)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(23) BOUNDS(n^1, INF)
(24) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
any(
y)))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
y)),
s(
min(
x,
y)))
any(
s(
x)) →
s(
s(
any(
x)))
any(
x) →
xTypes:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
any :: 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n313_0), gen_0':s3_0(n313_0)) → gen_0':s3_0(n313_0), rt ∈ Ω(1 + n3130)
any(gen_0':s3_0(+(1, n701_0))) → *4_0, rt ∈ Ω(n7010)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(26) BOUNDS(n^1, INF)
(27) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
any(
y)))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
y)),
s(
min(
x,
y)))
any(
s(
x)) →
s(
s(
any(
x)))
any(
x) →
xTypes:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
any :: 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n313_0), gen_0':s3_0(n313_0)) → gen_0':s3_0(n313_0), rt ∈ Ω(1 + n3130)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(28) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(29) BOUNDS(n^1, INF)
(30) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
any(
y)))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
y)),
s(
min(
x,
y)))
any(
s(
x)) →
s(
s(
any(
x)))
any(
x) →
xTypes:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
any :: 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(31) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(32) BOUNDS(n^1, INF)