* Step 1: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: h(x,c(y,z),t(w)) -> h(c(s(y),x),z,t(c(t(w),w))) h(c(x,y),c(s(z),z),t(w)) -> h(z,c(y,x),t(t(c(x,c(y,t(w)))))) h(c(s(x),c(s(0()),y)),z,t(x)) -> h(y,c(s(0()),c(x,z)),t(t(c(x,s(x))))) t(x) -> x t(x) -> c(0(),c(0(),c(0(),c(0(),c(0(),x))))) t(t(x)) -> t(c(t(x),x)) - Signature: {h/3,t/1} / {0/0,c/2,s/1} - Obligation: runtime complexity wrt. defined symbols {h,t} and constructors {0,c,s} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak dependency pairs: Strict DPs h#(x,c(y,z),t(w)) -> c_1(h#(c(s(y),x),z,t(c(t(w),w)))) h#(c(x,y),c(s(z),z),t(w)) -> c_2(h#(z,c(y,x),t(t(c(x,c(y,t(w))))))) h#(c(s(x),c(s(0()),y)),z,t(x)) -> c_3(h#(y,c(s(0()),c(x,z)),t(t(c(x,s(x)))))) t#(x) -> c_4(x) t#(x) -> c_5(x) t#(t(x)) -> c_6(t#(c(t(x),x))) Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: h#(x,c(y,z),t(w)) -> c_1(h#(c(s(y),x),z,t(c(t(w),w)))) h#(c(x,y),c(s(z),z),t(w)) -> c_2(h#(z,c(y,x),t(t(c(x,c(y,t(w))))))) h#(c(s(x),c(s(0()),y)),z,t(x)) -> c_3(h#(y,c(s(0()),c(x,z)),t(t(c(x,s(x)))))) t#(x) -> c_4(x) t#(x) -> c_5(x) t#(t(x)) -> c_6(t#(c(t(x),x))) - Strict TRS: h(x,c(y,z),t(w)) -> h(c(s(y),x),z,t(c(t(w),w))) h(c(x,y),c(s(z),z),t(w)) -> h(z,c(y,x),t(t(c(x,c(y,t(w)))))) h(c(s(x),c(s(0()),y)),z,t(x)) -> h(y,c(s(0()),c(x,z)),t(t(c(x,s(x))))) t(x) -> x t(x) -> c(0(),c(0(),c(0(),c(0(),c(0(),x))))) t(t(x)) -> t(c(t(x),x)) - Signature: {h/3,t/1,h#/3,t#/1} / {0/0,c/2,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1} - Obligation: runtime complexity wrt. defined symbols {h#,t#} and constructors {0,c,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: t#(x) -> c_4(x) t#(x) -> c_5(x) * Step 3: PredecessorEstimationCP WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: t#(x) -> c_4(x) t#(x) -> c_5(x) - Signature: {h/3,t/1,h#/3,t#/1} / {0/0,c/2,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1} - Obligation: runtime complexity wrt. defined symbols {h#,t#} and constructors {0,c,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: t#(x) -> c_4(x) 2: t#(x) -> c_5(x) The strictly oriented rules are moved into the weak component. ** Step 3.a:1: NaturalMI WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: t#(x) -> c_4(x) t#(x) -> c_5(x) - Signature: {h/3,t/1,h#/3,t#/1} / {0/0,c/2,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1} - Obligation: runtime complexity wrt. defined symbols {h#,t#} and constructors {0,c,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: none Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(c) = [0] p(h) = [0] p(s) = [0] p(t) = [0] p(h#) = [0] p(t#) = [1] p(c_1) = [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [0] Following rules are strictly oriented: t#(x) = [1] > [0] = c_4(x) t#(x) = [1] > [0] = c_5(x) Following rules are (at-least) weakly oriented: ** Step 3.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: t#(x) -> c_4(x) t#(x) -> c_5(x) - Signature: {h/3,t/1,h#/3,t#/1} / {0/0,c/2,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1} - Obligation: runtime complexity wrt. defined symbols {h#,t#} and constructors {0,c,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ** Step 3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: t#(x) -> c_4(x) t#(x) -> c_5(x) - Signature: {h/3,t/1,h#/3,t#/1} / {0/0,c/2,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1} - Obligation: runtime complexity wrt. defined symbols {h#,t#} and constructors {0,c,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:t#(x) -> c_4(x) -->_1 t#(x) -> c_5(x):2 -->_1 t#(x) -> c_4(x):1 2:W:t#(x) -> c_5(x) -->_1 t#(x) -> c_5(x):2 -->_1 t#(x) -> c_4(x):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: t#(x) -> c_4(x) 2: t#(x) -> c_5(x) ** Step 3.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {h/3,t/1,h#/3,t#/1} / {0/0,c/2,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1} - Obligation: runtime complexity wrt. defined symbols {h#,t#} and constructors {0,c,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))