0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 13 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtUsableRulesProof (⇔, 0 ms)
↳8 CdtProblem
↳9 CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳10 CdtProblem
↳11 CdtLeafRemovalProof (ComplexityIfPolyImplication, 0 ms)
↳12 CdtProblem
↳13 CdtInstantiationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CdtProblem
↳15 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 15 ms)
↳16 CdtProblem
↳17 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 49 ms)
↳18 CdtProblem
↳19 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 75 ms)
↳20 CdtProblem
↳21 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳22 BOUNDS(1, 1)
r(xs, ys, zs, nil) → xs
r(xs, nil, zs, cons(w, ws)) → r(xs, xs, cons(succ(zero), zs), ws)
r(xs, cons(y, ys), nil, cons(w, ws)) → r(xs, xs, cons(succ(zero), nil), ws)
r(xs, cons(y, ys), cons(z, zs), cons(w, ws)) → r(ys, cons(y, ys), zs, cons(succ(zero), cons(w, ws)))
As the TRS does not nest defined symbols, we have rc = irc.
r(xs, ys, zs, nil) → xs
r(xs, nil, zs, cons(w, ws)) → r(xs, xs, cons(succ(zero), zs), ws)
r(xs, cons(y, ys), nil, cons(w, ws)) → r(xs, xs, cons(succ(zero), nil), ws)
r(xs, cons(y, ys), cons(z, zs), cons(w, ws)) → r(ys, cons(y, ys), zs, cons(succ(zero), cons(w, ws)))
Tuples:
r(z0, z1, z2, nil) → z0
r(z0, nil, z1, cons(z2, z3)) → r(z0, z0, cons(succ(zero), z1), z3)
r(z0, cons(z1, z2), nil, cons(z3, z4)) → r(z0, z0, cons(succ(zero), nil), z4)
r(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → r(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6)))
S tuples:
R(z0, z1, z2, nil) → c
R(z0, nil, z1, cons(z2, z3)) → c1(R(z0, z0, cons(succ(zero), z1), z3))
R(z0, cons(z1, z2), nil, cons(z3, z4)) → c2(R(z0, z0, cons(succ(zero), nil), z4))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
K tuples:none
R(z0, z1, z2, nil) → c
R(z0, nil, z1, cons(z2, z3)) → c1(R(z0, z0, cons(succ(zero), z1), z3))
R(z0, cons(z1, z2), nil, cons(z3, z4)) → c2(R(z0, z0, cons(succ(zero), nil), z4))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
r
R
c, c1, c2, c3
R(z0, z1, z2, nil) → c
Tuples:
r(z0, z1, z2, nil) → z0
r(z0, nil, z1, cons(z2, z3)) → r(z0, z0, cons(succ(zero), z1), z3)
r(z0, cons(z1, z2), nil, cons(z3, z4)) → r(z0, z0, cons(succ(zero), nil), z4)
r(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → r(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6)))
S tuples:
R(z0, nil, z1, cons(z2, z3)) → c1(R(z0, z0, cons(succ(zero), z1), z3))
R(z0, cons(z1, z2), nil, cons(z3, z4)) → c2(R(z0, z0, cons(succ(zero), nil), z4))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
K tuples:none
R(z0, nil, z1, cons(z2, z3)) → c1(R(z0, z0, cons(succ(zero), z1), z3))
R(z0, cons(z1, z2), nil, cons(z3, z4)) → c2(R(z0, z0, cons(succ(zero), nil), z4))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
r
R
c1, c2, c3
r(z0, z1, z2, nil) → z0
r(z0, nil, z1, cons(z2, z3)) → r(z0, z0, cons(succ(zero), z1), z3)
r(z0, cons(z1, z2), nil, cons(z3, z4)) → r(z0, z0, cons(succ(zero), nil), z4)
r(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → r(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6)))
S tuples:
R(z0, nil, z1, cons(z2, z3)) → c1(R(z0, z0, cons(succ(zero), z1), z3))
R(z0, cons(z1, z2), nil, cons(z3, z4)) → c2(R(z0, z0, cons(succ(zero), nil), z4))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
K tuples:none
R(z0, nil, z1, cons(z2, z3)) → c1(R(z0, z0, cons(succ(zero), z1), z3))
R(z0, cons(z1, z2), nil, cons(z3, z4)) → c2(R(z0, z0, cons(succ(zero), nil), z4))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R
c1, c2, c3
R(nil, nil, z1, cons(z2, cons(y2, y3))) → c1(R(nil, nil, cons(succ(zero), z1), cons(y2, y3)))
R(cons(y1, y2), nil, z1, cons(z2, cons(y5, y6))) → c1(R(cons(y1, y2), cons(y1, y2), cons(succ(zero), z1), cons(y5, y6)))
S tuples:
R(z0, cons(z1, z2), nil, cons(z3, z4)) → c2(R(z0, z0, cons(succ(zero), nil), z4))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, z1, cons(z2, cons(y2, y3))) → c1(R(nil, nil, cons(succ(zero), z1), cons(y2, y3)))
R(cons(y1, y2), nil, z1, cons(z2, cons(y5, y6))) → c1(R(cons(y1, y2), cons(y1, y2), cons(succ(zero), z1), cons(y5, y6)))
K tuples:none
R(z0, cons(z1, z2), nil, cons(z3, z4)) → c2(R(z0, z0, cons(succ(zero), nil), z4))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, z1, cons(z2, cons(y2, y3))) → c1(R(nil, nil, cons(succ(zero), z1), cons(y2, y3)))
R(cons(y1, y2), nil, z1, cons(z2, cons(y5, y6))) → c1(R(cons(y1, y2), cons(y1, y2), cons(succ(zero), z1), cons(y5, y6)))
R
c2, c3, c1
R(cons(y1, y2), nil, z1, cons(z2, cons(y5, y6))) → c1(R(cons(y1, y2), cons(y1, y2), cons(succ(zero), z1), cons(y5, y6)))
S tuples:
R(z0, cons(z1, z2), nil, cons(z3, z4)) → c2(R(z0, z0, cons(succ(zero), nil), z4))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, z1, cons(z2, cons(y2, y3))) → c1(R(nil, nil, cons(succ(zero), z1), cons(y2, y3)))
K tuples:none
R(z0, cons(z1, z2), nil, cons(z3, z4)) → c2(R(z0, z0, cons(succ(zero), nil), z4))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, z1, cons(z2, cons(y2, y3))) → c1(R(nil, nil, cons(succ(zero), z1), cons(y2, y3)))
R
c2, c3, c1
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
S tuples:
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, z1, cons(z2, cons(y2, y3))) → c1(R(nil, nil, cons(succ(zero), z1), cons(y2, y3)))
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
K tuples:none
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, z1, cons(z2, cons(y2, y3))) → c1(R(nil, nil, cons(succ(zero), z1), cons(y2, y3)))
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
R
c3, c1, c2
We considered the (Usable) Rules:none
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
The order we found is given by the following interpretation:
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, z1, cons(z2, cons(y2, y3))) → c1(R(nil, nil, cons(succ(zero), z1), cons(y2, y3)))
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
POL(R(x1, x2, x3, x4)) = x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(cons(x1, x2)) = [1] + x2
POL(nil) = 0
POL(succ(x1)) = 0
POL(zero) = 0
S tuples:
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, z1, cons(z2, cons(y2, y3))) → c1(R(nil, nil, cons(succ(zero), z1), cons(y2, y3)))
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
K tuples:
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, z1, cons(z2, cons(y2, y3))) → c1(R(nil, nil, cons(succ(zero), z1), cons(y2, y3)))
Defined Rule Symbols:none
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
R
c3, c1, c2
We considered the (Usable) Rules:none
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
The order we found is given by the following interpretation:
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, z1, cons(z2, cons(y2, y3))) → c1(R(nil, nil, cons(succ(zero), z1), cons(y2, y3)))
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
POL(R(x1, x2, x3, x4)) = x2·x3 + [2]x22
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(cons(x1, x2)) = [1] + x2
POL(nil) = 0
POL(succ(x1)) = 0
POL(zero) = [2]
S tuples:
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, z1, cons(z2, cons(y2, y3))) → c1(R(nil, nil, cons(succ(zero), z1), cons(y2, y3)))
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
K tuples:
R(nil, nil, z1, cons(z2, cons(y2, y3))) → c1(R(nil, nil, cons(succ(zero), z1), cons(y2, y3)))
Defined Rule Symbols:none
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R
c3, c1, c2
We considered the (Usable) Rules:none
R(nil, nil, z1, cons(z2, cons(y2, y3))) → c1(R(nil, nil, cons(succ(zero), z1), cons(y2, y3)))
The order we found is given by the following interpretation:
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, z1, cons(z2, cons(y2, y3))) → c1(R(nil, nil, cons(succ(zero), z1), cons(y2, y3)))
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
POL(R(x1, x2, x3, x4)) = [2]x2 + [2]x4 + [2]x2·x3 + x22
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(cons(x1, x2)) = [2] + x2
POL(nil) = 0
POL(succ(x1)) = 0
POL(zero) = [2]
S tuples:none
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, z1, cons(z2, cons(y2, y3))) → c1(R(nil, nil, cons(succ(zero), z1), cons(y2, y3)))
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
Defined Rule Symbols:none
R(x2, cons(x1, x2), nil, cons(succ(zero), cons(x5, x6))) → c2(R(x2, x2, cons(succ(zero), nil), cons(x5, x6)))
R(z0, cons(z1, z2), cons(z3, z4), cons(z5, z6)) → c3(R(z2, cons(z1, z2), z4, cons(succ(zero), cons(z5, z6))))
R(nil, nil, z1, cons(z2, cons(y2, y3))) → c1(R(nil, nil, cons(succ(zero), z1), cons(y2, y3)))
R
c3, c1, c2