### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, x) → 0
minus(x, 0) → x
minus(0, x) → 0
minus(s(x), s(y)) → minus(x, y)
isZero(0) → true
isZero(s(x)) → false
mod(x, y) → if_mod(isZero(y), le(y, x), x, y, minus(x, y))
if_mod(true, b, x, y, z) → divByZeroError
if_mod(false, false, x, y, z) → x
if_mod(false, true, x, y, z) → mod(z, y)

Rewrite Strategy: FULL

### (1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
le(s(x), s(y)) →+ le(x, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].

### (3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

### (4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(x, x) → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(s(x), s(y)) → minus(x, y)
isZero(0') → true
isZero(s(x)) → false
mod(x, y) → if_mod(isZero(y), le(y, x), x, y, minus(x, y))
if_mod(true, b, x, y, z) → divByZeroError
if_mod(false, false, x, y, z) → x
if_mod(false, true, x, y, z) → mod(z, y)

S is empty.
Rewrite Strategy: FULL

Infered types.

### (6) Obligation:

TRS:
Rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(x, x) → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(s(x), s(y)) → minus(x, y)
isZero(0') → true
isZero(s(x)) → false
mod(x, y) → if_mod(isZero(y), le(y, x), x, y, minus(x, y))
if_mod(true, b, x, y, z) → divByZeroError
if_mod(false, false, x, y, z) → x
if_mod(false, true, x, y, z) → mod(z, y)

Types:
le :: 0':s:divByZeroError → 0':s:divByZeroError → true:false
0' :: 0':s:divByZeroError
true :: true:false
s :: 0':s:divByZeroError → 0':s:divByZeroError
false :: true:false
minus :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
isZero :: 0':s:divByZeroError → true:false
mod :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
if_mod :: true:false → true:false → 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
divByZeroError :: 0':s:divByZeroError
hole_true:false1_0 :: true:false
hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError
gen_0':s:divByZeroError3_0 :: Nat → 0':s:divByZeroError

### (7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
le, minus, mod

They will be analysed ascendingly in the following order:
le < mod
minus < mod

### (8) Obligation:

TRS:
Rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(x, x) → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(s(x), s(y)) → minus(x, y)
isZero(0') → true
isZero(s(x)) → false
mod(x, y) → if_mod(isZero(y), le(y, x), x, y, minus(x, y))
if_mod(true, b, x, y, z) → divByZeroError
if_mod(false, false, x, y, z) → x
if_mod(false, true, x, y, z) → mod(z, y)

Types:
le :: 0':s:divByZeroError → 0':s:divByZeroError → true:false
0' :: 0':s:divByZeroError
true :: true:false
s :: 0':s:divByZeroError → 0':s:divByZeroError
false :: true:false
minus :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
isZero :: 0':s:divByZeroError → true:false
mod :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
if_mod :: true:false → true:false → 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
divByZeroError :: 0':s:divByZeroError
hole_true:false1_0 :: true:false
hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError
gen_0':s:divByZeroError3_0 :: Nat → 0':s:divByZeroError

Generator Equations:
gen_0':s:divByZeroError3_0(0) ⇔ 0'
gen_0':s:divByZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:divByZeroError3_0(x))

The following defined symbols remain to be analysed:
le, minus, mod

They will be analysed ascendingly in the following order:
le < mod
minus < mod

### (9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
le(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Induction Base:
le(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(0)) →RΩ(1)
true

Induction Step:
le(gen_0':s:divByZeroError3_0(+(n5_0, 1)), gen_0':s:divByZeroError3_0(+(n5_0, 1))) →RΩ(1)
le(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (11) Obligation:

TRS:
Rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(x, x) → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(s(x), s(y)) → minus(x, y)
isZero(0') → true
isZero(s(x)) → false
mod(x, y) → if_mod(isZero(y), le(y, x), x, y, minus(x, y))
if_mod(true, b, x, y, z) → divByZeroError
if_mod(false, false, x, y, z) → x
if_mod(false, true, x, y, z) → mod(z, y)

Types:
le :: 0':s:divByZeroError → 0':s:divByZeroError → true:false
0' :: 0':s:divByZeroError
true :: true:false
s :: 0':s:divByZeroError → 0':s:divByZeroError
false :: true:false
minus :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
isZero :: 0':s:divByZeroError → true:false
mod :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
if_mod :: true:false → true:false → 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
divByZeroError :: 0':s:divByZeroError
hole_true:false1_0 :: true:false
hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError
gen_0':s:divByZeroError3_0 :: Nat → 0':s:divByZeroError

Lemmas:
le(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s:divByZeroError3_0(0) ⇔ 0'
gen_0':s:divByZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:divByZeroError3_0(x))

The following defined symbols remain to be analysed:
minus, mod

They will be analysed ascendingly in the following order:
minus < mod

### (12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
minus(gen_0':s:divByZeroError3_0(n294_0), gen_0':s:divByZeroError3_0(n294_0)) → gen_0':s:divByZeroError3_0(0), rt ∈ Ω(1 + n2940)

Induction Base:
minus(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(0)) →RΩ(1)
0'

Induction Step:
minus(gen_0':s:divByZeroError3_0(+(n294_0, 1)), gen_0':s:divByZeroError3_0(+(n294_0, 1))) →RΩ(1)
minus(gen_0':s:divByZeroError3_0(n294_0), gen_0':s:divByZeroError3_0(n294_0)) →IH
gen_0':s:divByZeroError3_0(0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (14) Obligation:

TRS:
Rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(x, x) → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(s(x), s(y)) → minus(x, y)
isZero(0') → true
isZero(s(x)) → false
mod(x, y) → if_mod(isZero(y), le(y, x), x, y, minus(x, y))
if_mod(true, b, x, y, z) → divByZeroError
if_mod(false, false, x, y, z) → x
if_mod(false, true, x, y, z) → mod(z, y)

Types:
le :: 0':s:divByZeroError → 0':s:divByZeroError → true:false
0' :: 0':s:divByZeroError
true :: true:false
s :: 0':s:divByZeroError → 0':s:divByZeroError
false :: true:false
minus :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
isZero :: 0':s:divByZeroError → true:false
mod :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
if_mod :: true:false → true:false → 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
divByZeroError :: 0':s:divByZeroError
hole_true:false1_0 :: true:false
hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError
gen_0':s:divByZeroError3_0 :: Nat → 0':s:divByZeroError

Lemmas:
le(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
minus(gen_0':s:divByZeroError3_0(n294_0), gen_0':s:divByZeroError3_0(n294_0)) → gen_0':s:divByZeroError3_0(0), rt ∈ Ω(1 + n2940)

Generator Equations:
gen_0':s:divByZeroError3_0(0) ⇔ 0'
gen_0':s:divByZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:divByZeroError3_0(x))

The following defined symbols remain to be analysed:
mod

### (15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol mod.

### (16) Obligation:

TRS:
Rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(x, x) → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(s(x), s(y)) → minus(x, y)
isZero(0') → true
isZero(s(x)) → false
mod(x, y) → if_mod(isZero(y), le(y, x), x, y, minus(x, y))
if_mod(true, b, x, y, z) → divByZeroError
if_mod(false, false, x, y, z) → x
if_mod(false, true, x, y, z) → mod(z, y)

Types:
le :: 0':s:divByZeroError → 0':s:divByZeroError → true:false
0' :: 0':s:divByZeroError
true :: true:false
s :: 0':s:divByZeroError → 0':s:divByZeroError
false :: true:false
minus :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
isZero :: 0':s:divByZeroError → true:false
mod :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
if_mod :: true:false → true:false → 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
divByZeroError :: 0':s:divByZeroError
hole_true:false1_0 :: true:false
hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError
gen_0':s:divByZeroError3_0 :: Nat → 0':s:divByZeroError

Lemmas:
le(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
minus(gen_0':s:divByZeroError3_0(n294_0), gen_0':s:divByZeroError3_0(n294_0)) → gen_0':s:divByZeroError3_0(0), rt ∈ Ω(1 + n2940)

Generator Equations:
gen_0':s:divByZeroError3_0(0) ⇔ 0'
gen_0':s:divByZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:divByZeroError3_0(x))

No more defined symbols left to analyse.

### (17) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

### (19) Obligation:

TRS:
Rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(x, x) → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(s(x), s(y)) → minus(x, y)
isZero(0') → true
isZero(s(x)) → false
mod(x, y) → if_mod(isZero(y), le(y, x), x, y, minus(x, y))
if_mod(true, b, x, y, z) → divByZeroError
if_mod(false, false, x, y, z) → x
if_mod(false, true, x, y, z) → mod(z, y)

Types:
le :: 0':s:divByZeroError → 0':s:divByZeroError → true:false
0' :: 0':s:divByZeroError
true :: true:false
s :: 0':s:divByZeroError → 0':s:divByZeroError
false :: true:false
minus :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
isZero :: 0':s:divByZeroError → true:false
mod :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
if_mod :: true:false → true:false → 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
divByZeroError :: 0':s:divByZeroError
hole_true:false1_0 :: true:false
hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError
gen_0':s:divByZeroError3_0 :: Nat → 0':s:divByZeroError

Lemmas:
le(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
minus(gen_0':s:divByZeroError3_0(n294_0), gen_0':s:divByZeroError3_0(n294_0)) → gen_0':s:divByZeroError3_0(0), rt ∈ Ω(1 + n2940)

Generator Equations:
gen_0':s:divByZeroError3_0(0) ⇔ 0'
gen_0':s:divByZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:divByZeroError3_0(x))

No more defined symbols left to analyse.

### (20) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

### (22) Obligation:

TRS:
Rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(x, x) → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(s(x), s(y)) → minus(x, y)
isZero(0') → true
isZero(s(x)) → false
mod(x, y) → if_mod(isZero(y), le(y, x), x, y, minus(x, y))
if_mod(true, b, x, y, z) → divByZeroError
if_mod(false, false, x, y, z) → x
if_mod(false, true, x, y, z) → mod(z, y)

Types:
le :: 0':s:divByZeroError → 0':s:divByZeroError → true:false
0' :: 0':s:divByZeroError
true :: true:false
s :: 0':s:divByZeroError → 0':s:divByZeroError
false :: true:false
minus :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
isZero :: 0':s:divByZeroError → true:false
mod :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
if_mod :: true:false → true:false → 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
divByZeroError :: 0':s:divByZeroError
hole_true:false1_0 :: true:false
hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError
gen_0':s:divByZeroError3_0 :: Nat → 0':s:divByZeroError

Lemmas:
le(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s:divByZeroError3_0(0) ⇔ 0'
gen_0':s:divByZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:divByZeroError3_0(x))

No more defined symbols left to analyse.

### (23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) → true, rt ∈ Ω(1 + n50)